INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 2.7] ASYMPTOTES

Compiled by Christos Nikolaidis

O. Practice questions

[Maximum mark: 18] [without GDC]
 Complete the following table by writing down the corresponding asymptotes

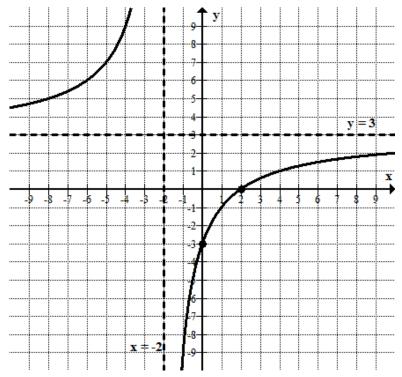
Function	Vertical asymptote	Horizontal asymptote
$f(x) = \frac{2x+7}{x-5}$	<i>x</i> = 5	<i>y</i> = 2
$f(x) = \frac{x+7}{2x-3}$		
$f(x) = \frac{-4x+1}{2x-6}$		
$f(x) = \frac{2}{x - 5}$		
$f(x) = \frac{2}{x-5} + 1$		
$f(x) = \frac{2}{x-5} - 1$		
$f(x) = \frac{2x+7}{x-5} + 1$		
$f(x) = \frac{-4x+1}{2x-6} + 3$		
$f(x) = \frac{5 - x}{5 + x}$		
$f(x) = \frac{3x + 134}{2x + 5}$		

2. [Maximum mark: 12] [with / without GDC]

$$Let f(x) = \frac{3x - 6}{x + 2}$$

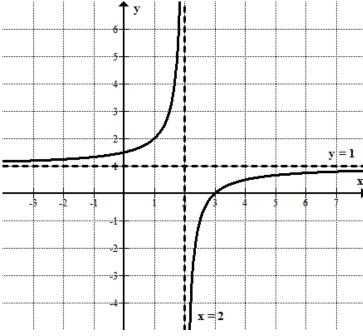
- (a) Write down the equations of the asymptotes. [2]
- (b) Find the x- and y-intercepts. [2]
- (c) Sketch the graph of the function. Indicate the information found in (a) and (b). [4]
- (d) Write down the domain and the range of the function. [2]
- (e) Find the point of intersection between the graph of f and the line y = 1. [2]

 3. [Maximum mark: 10] [with / without GDC]


Let
$$f(x) = \frac{3}{x-2}$$

- (a) Write down the equations of the asymptotes. [2]
- (b) Find any x- or y-intercepts. [2]
- (c) Sketch the graph of the function. Indicate the information found in (a) and (b). [4]
- (d) Write down the domain and the range of the function. [2]

4. [Maximum mark: 8] [without GDC]


The graph of the function $f(x) = \frac{ax+b}{x+c}$ is shown below.

- (a) Find the values of a,b,c. [4]
- (b) Find f(4) and $f^{-1}(1)$. [2]
- (c) By observing the graph, solve the inequality $f(x) \le 1$. [2]

5. [Maximum mark: 19] [without GDC]

The graph of the function $f(x) = \frac{x-6}{x-2}$ is shown below.

(a) Write down the images of the horizontal asymptote y = 1 under the following transformations

y = f(x) + 2	y = 3	y = f(x+2)	
y = f(x) - 2		y = f(x-2)	
y = 2f(x)		y = f(2x)	
y = f(x)/2		y = f(x/2)	
y = -f(x)		y = f(-x)	

(b) Write down the images of the vertical asymptote x=2 under the following transformations

y = f(x) + 2	y = f((x+2)
y = f(x) - 2	y = f((x-2)
y = 2f(x)	y = f(2x)
y = f(x)/2	y = f((x/2)
y = -f(x)	y = f((-x)

[9]

[10]

6*. [Maximum mark: 10] [without GDC]

(a) Express the function
$$f(x) = 4 + \frac{5}{x+3}$$
 in the form $f(x) = \frac{ax+b}{x+3}$. [2]

- (b) Express the function $g(x) = \frac{x+10}{x+3}$ in the form $g(x) = A + \frac{B}{x+3}$. [2]
- (c) Express the function $h(x) = \frac{2x+10}{x+3}$ in the form $h(x) = C + \frac{D}{x+3}$. [2]
- (d) Complete the following table

	f	g	h
Vertical asymptote			
Horizontal asymptote			

[4

7 *.	[Maximum	mark: 61	1	Turithaut	CDCI
<i>'</i> .	[Maximum	IIIain. U	1 1	[without	$\mathbf{G} \mathbf{D} \mathbf{C} \mathbf{J}$

Let
$$g(x) = 3 + \frac{4}{x-2}$$

(a) Write down the equations of the asymptotes of the graph of g. [2]

(b) Describe the sequence of transformations that map the graph of $f(x) = \frac{1}{x}$ into the graph of g.

[4]

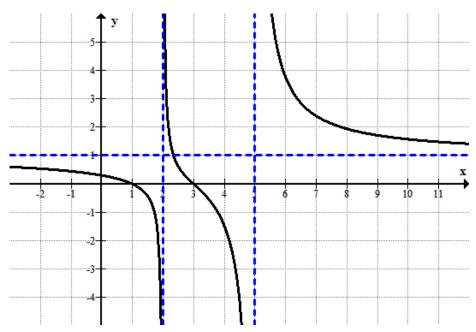
 	• • • • • • • • • • • • • • • • • • • •	

.....

8**. [Maximum mark: 7] *[without GDC]*

$$Let h(x) = \frac{3x+1}{x-2}$$

- (a) Write down the equations of the asymptotes of the graph of h. [2]
- (b) Describe the sequence of transformations that map the graph of $f(x) = \frac{1}{x}$ into the graph of h.


[5]

.....

9*. [Maximum mark: 7] [without GDC]

The graph of a function f is shown below.

(a) Write down the equation of the horizontal asymptote.

[1]

(b) Write down the equations of all vertical asymptotes.

[1]

(c) Complete the following table

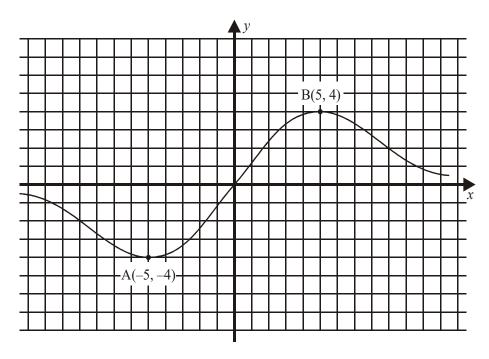
(1)	$\lim_{x \to +\infty} f(x) =$	(4)	$\lim_{x \to -\infty} f(x) =$
(2)	$\lim_{x\to 2^-} f(x) =$	(5)	$\lim_{x\to 2^+} f(x) =$
(3)	$\lim_{x\to 5^-} f(x) =$	(6)	$\lim_{x \to 5^+} f(x) =$

[3]

- (d) State the results from question (c) which justify
 - (i) the horizontal asymptote

(ii) the vertical asymptotes.

[2]

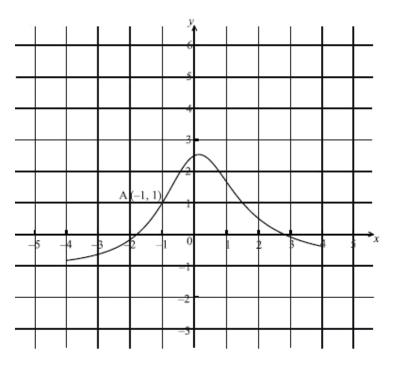


[MAA 2.7] ASYMPTOTES

١.	Exan	style questions (SHORT)	
0.	[Max	kimum mark: 6] <i>[without GDC]</i>	
	Con	sider the graph of $f(x) = \frac{6x+1}{2x-4}$.	
	(a)	Write down the domain and the range of f .	[2
	(b)	Write down the equation of	
		(i) the horizontal asymptote (ii) the vertical asymptote.	[2
	(c)	Find the x – intercept and the y – intercept.	[2
1.	[Max	kimum mark: 6] <i>[without GDC]</i>	
	Con	sider the graph of $f(x) = \frac{6}{2x-4}$.	
	(a)	Write down the domain and the range of f .	[2
	(b)	Write down the equation of	
		(i) the horizontal asymptote (ii) the vertical asymptote.	[2
	(c)	Find the x – intercept and the y – intercept (if they exist).	[2

12. [Maximum mark: 6] [without GDC]

The diagram shows the graph of y = f(x), with the x-axis as an asymptote.

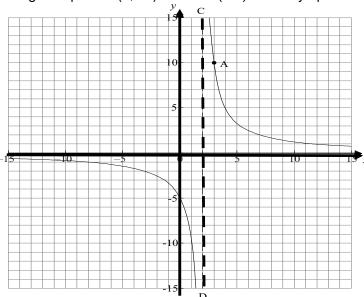


- (a) On the same axes, draw the graph of y = f(x+2) 3, indicating the coordinates of the images of the points A and B. [3]
- (b) Write down the equation of the asymptote
 - (i) for the graph of y = f(x+2).
 - (ii) for the graph of y = f(x) 3.
 - (iii) for the graph of y = f(x+2)-3. [3]

.....

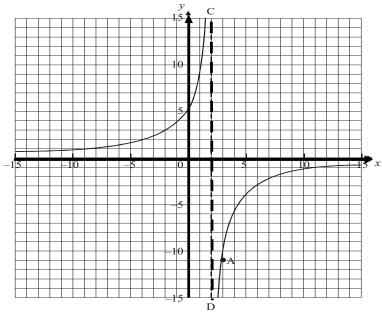
13. [Maximum mark: 8] [without GDC]

The graph of a function f is shown in the diagram below. The point A (-1, 1) is on the graph, and y = -1 is a horizontal asymptote.



- (a) Let g(x) = f(x-1) + 2. On the diagram, sketch the graph of g. [3]
- (b) Write down the equation of the horizontal asymptote of g. [1]
- (c) Let A' be the point on the graph of *g* corresponding to point A. Write down the coordinates of A'. [2]
- (d) Write down the equation of the horizontal asymptote of

(i)
$$y = f(2x)$$
. (ii) $y = 2f(x)$


14. [Maximum mark: 6] [without GDC]

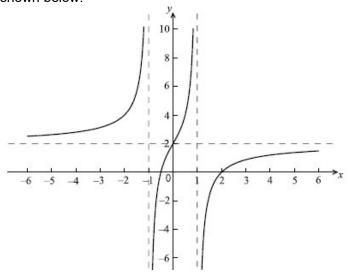
(a) The diagram shows part of the graph of the function $f(x) = \frac{q}{x-p}$. The curve passes through the point A (3, 10). The line (CD) is an asymptote.

Find the value of (i) p (ii) q [4]

(b) The graph of f(x) is transformed as shown in the following diagram. The point A is transformed to A' (3, -10).

Give a full geometric description of the transformation. [2]

[MAA 2.7] ASYMPTOTES


15.	[Maximum mark: 7]	[with / with	out GDC1
10.	[iviaxiiiiaiii iiiaiik. <i>i</i> .	[[vvicii / vvicii	out ODO

The function f(x) is defined as $f(x) = 3 + \frac{1}{2x-5}$, $x \neq \frac{5}{2}$.

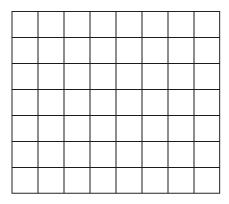
- (a) Sketch the curve of f for $-5 \le x \le 5$, showing the asymptotes. [3]
- (b) Using your sketch, write down
 - (i) the equation of each asymptote;
 - (ii) the value of the x-intercept;
 - (iii) the value of the y -intercept. [4]

16. [Maximum mark: 4] **[without GDC]**

Let $f(x) = p - \frac{3x}{x^2 - q^2}$, where $p, q \in R^+$. Part of the graph of f, including the asymptotes, is shown below.

The equations of the asymptotes are x = 1, x = -1, y = 2.

Write down the value of (i) p (ii)


[2]

[2]

17*. [Maximum mark: 6] [with GDC]

The function f is defined by $f(x) = \frac{3}{\sqrt{9-x^2}}$, for -3 < x < 3.

(a) On the grid below, sketch the graph of f.

(b) Write down the equation of each vertical asymptote.

(c) Write down the range of the function f. [2]

B. Exam style questions (LONG)

18. [Maximum mark:	12]	[without	GDC]
---------------------------	-----	----------	------

The function f is given by

$$f(x) = \frac{2x+1}{x-3}, x \in \mathbb{R}, x \neq 3.$$

- (a) (i) Show that y = 2 is an asymptote of the graph of y = f(x).
 - (ii) Find the vertical asymptote of the graph.
 - (iii) Write down the coordinates of the point P at which the asymptotes intersect. [4]
- (b) Find the points of intersection of the graph and the axes. [4]
- (c) Hence sketch the graph of y = f(x), showing the asymptotes by dotted lines. [4]

.....

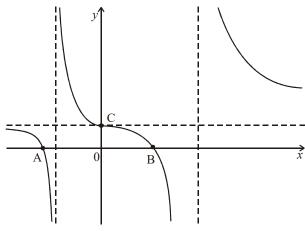
.....

.....

19.

[Maː	ximum	mark: 17] [without GDC]	
Con	sider t	he functions f and g where $f(x) = 3x - 5$ and $g(x) = x - 2$.	
(a)	Find	the inverse function, f^{-1} .	[3]
(b)	Give	en that $g^{-1}(x) = x + 2$, find $(g^{-1} \circ f)(x)$.	[2]
(c)	Give	en also that $(f^{-1} \circ g)(x) = \frac{x+3}{3}$, solve $(f^{-1} \circ g)(x) = (g^{-1} \circ f)(x)$.	[2]
Let	h(x) =	$\frac{f(x)}{g(x)}, x \neq 2.$	
(d)	(i)	Sketch the graph of h for $-3 \le x \le 7$ and $-2 \le y \le 8$, including any	
		asymptotes.	
	(ii)	Write down the equations of the asymptotes.	[5]
(e)	(i)	Find $h^{-1}(x)$	
	(ii)	Write down the equations of the asymptotes of h^{-1}	[5]
	•••••		

[MAA 2.7] ASYMPTOTES


•••
•••
 •••
•••
•••
•••
 •••
•••
•••
 • • •

20.** [Maximum mark: 10] [with GDC]

Let
$$g(x) = x^4 - 2x^3 + x^2 - 2$$

(a) Solve
$$g(x) = 0$$
. [2]

Let $f(x) = \frac{2x^3}{g(x)} + 1$. A part of the graph of f(x) is shown below.

- (b) Write down
 - (i) the domain of f; (ii) the range of f. [2]
- (c) The graph has vertical asymptotes with equations x = a and x = b where a < b.

 Write down the value of a and of b.
- (d) The graph has a horizontal asymptote with equation y = 1. Explain why the value of f(x) approaches 1 as x becomes very large. [2]
- (e) The graph intersects the *x* -axis at the points A and B. Write down the value of the *x* -coordinate at (i) A; (ii) B. [2]