Índice

1	Fur	ciones elementales	2
	1.1	Funciones lineales	2
	1.2	Funciones polinómicas de segundo grado (Parábolas)	2
	1.3	Funciones con radicales	3
	1.4	Funciones exponenciales $(f(x) = ax \rightarrow a > 0)$	3
	1.5	Funciones logarítmicas <i>loga(x)</i>	4
	1.6	Funciones de proporcionalidad inversa (Hipérbolas) $fx = 1x$	4
	1.7	Funciones trigonométricas.	5
	1.7	.1 Seno y coseno	5
	1.7	.2 Tangente	5
	1.8	Ejemplos de funciones	6
2	Tra	nsformaciones de funciones	6
	2.1	Desplazamiento lateral $gx = f(x - h)$	6
	2.2	Desplazamiento vertical $gx = fx + h$	6
	2.3	Simetría con respecto al eje 0 X	6
	2.4	Simetría con respecto al eje OY	6
	2.5	Dilataciones horizontales	6
	2.6	Dilataciones verticales	6
3	Fur	nción inversa	6
	3.1	Cálculo de la función inversa de una función.	7
4	Ope	eraciones con funciones	7
	4.1	Ejemplo de operaciones con funciones	7
5	Coı	mposición de funciones	8
	5.1	Ejemplo de composición de funciones	8
6	Eje	rcicios	8
	6.1	Calcular la función inversa de las siguientes funciones	8
	6.2	Halla el valor de las siguientes funciones en los puntos que se indican teniendo en cuenta que:	8
	6.3	Sean $fx = x2$ y $gx = x - 1x$ calcula	8
7	Lín	nites de funciones	9
	7.1	Límite de una función en el infinito	9
	7.1	.1 Cálculo de límites en el infinito	9
	7.2	Operaciones con límites	.11
	7.3	Indeterminaciones	.11
	7.4	Resolución de indeterminaciones	.11
	7.4	.1 Indeterminaciones ∞∞	.11

7.	4.2	Indeterminaciones $\infty - \infty$ (Se transforman en indeterminaciones $\infty \infty$	11
7.	4.3	Indeterminaciones del tipo 1∞	11
7.5	Lín	nites de una función en un punto	12
7.:	5.1	Límites laterales	12
7.:	5.2	Límite de una función en un punto	13

1 Funciones elementales

1.1 Funciones lineales

Toda función lineal viene caracterizada por la siguiente expresión algebraica (Ecuación explícita)

$$y = f(x) = mx + n \tag{1}$$

Al parámetro m se le denomina pendiente y al parámetro n se le denomina ordenada en el origen.

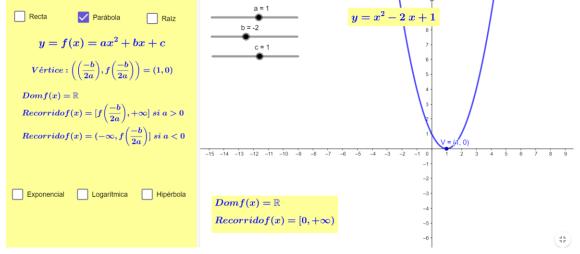
Nos podemos encontrar con los siguientes casos particulares

- $m = 0 \rightarrow y = n$ (Función constante). Recta paralela al eje 0X que pasa por el punto (0, n)
- $n = 0 \rightarrow y = mx$ (Función de proporcionalidad directa)

1.2 Funciones polinómicas de segundo grado (Parábolas)

Una función del tipo $f(x) = ax^2 + bx + c$ representa una parábola cuyo vértice es $V = (-\frac{b}{2a}, f(-\frac{b}{2a}))$.

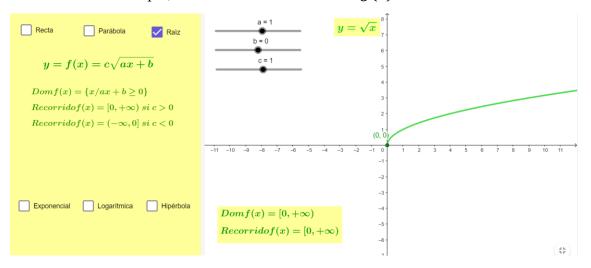
- La parábola es simétrica con respecto a su vértice.
- Su dominio se $Dom(f) = \mathbb{R}$
- Su recorrido es $Im[f(x)] = \begin{cases} \left(-\infty, -\frac{b}{2a}\right) Si, & a < 0 \\ \left[-\frac{b}{2a}, \infty\right) Si, & a > 0 \end{cases}$
- Podemos calcular los puntos de corte con el eje OX resolviendo la ecuación $f(x) = 0 \rightarrow ax^2 + bx + c = 0$. Si la ecuación anterior tiene como soluciones x_0 e x_1 . Los puntos de corte con el eje OX son $P_{cx0} = (x_0, 0)$; $P_{cx1} = (x_1, 0)$. En algunas ocasiones la función no tiene puntos de corte con el eje x.
- La función tiene un único punto de corte con el eje OY. $P_{cy} = (0, d)$
- Para representar una parábola podemos hacer una tabla de valores. Es muy importante calcular el vértice. En ese caso, teniendo en cuenta la simetría de la parábola calculamos todos



1.3 Funciones con radicales

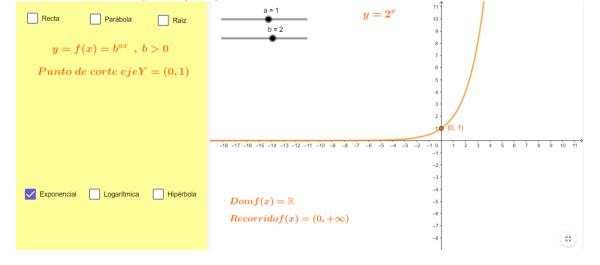
Las funciones con radicales son funciones en cuya expresión algebraica aparece la variable x bajo el signo radical $f(x) = \sqrt[n]{g(x)}$

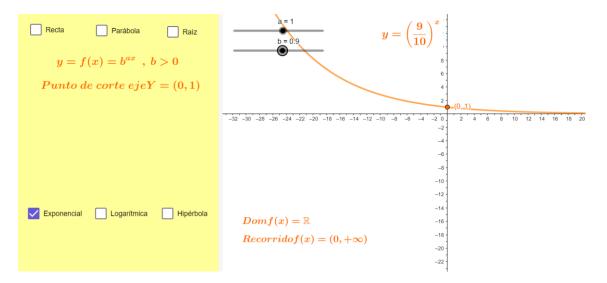
- Si n es un número par, su dominio es el intervalo en el que $g(x) \ge 0$
- Si n es un número impar, su dominio es el dominio de g(x)



1.4 Funciones exponenciales $(f(x) = a^x \rightarrow a > 0)$

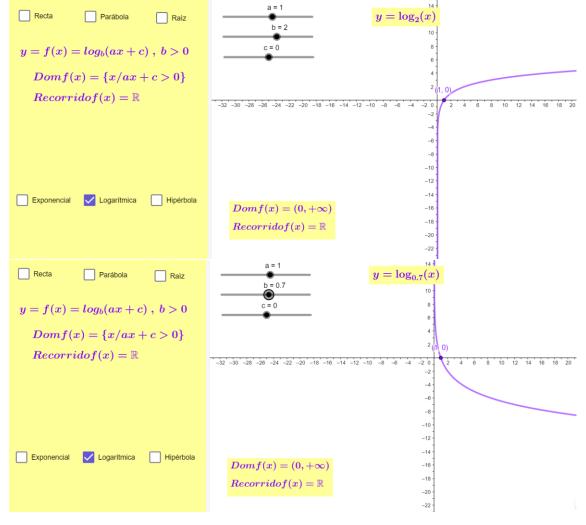
- Si $0 < a < 1 \rightarrow f(x)$ es decreciente
- Si $a > 1 \rightarrow f(x)$ es creciente
- Todas pasan por el punto*P*(0,1)
- Su Dominio es $Dom(f) = \mathbb{R}$
- Su recorrido es $Im(f) = (0, \infty)$





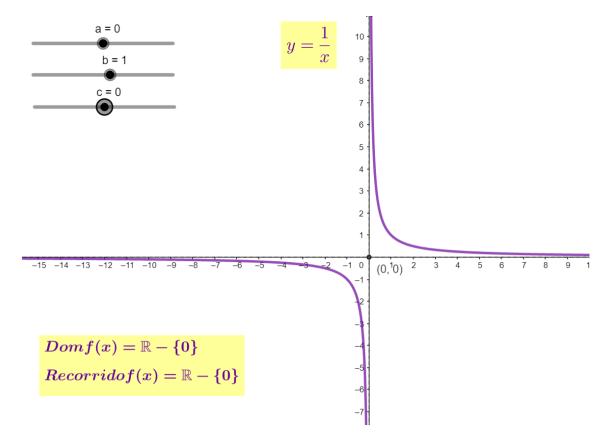
1.5 Funciones logarítmicas $log_a(x)$

- Su dominio es $Dom(f) = (0, \infty)$
- Su recorrido es $Im(f) = \mathbb{R}$
- Pasan por el punto P(1,0)
- Si $0 < \alpha < 1 \rightarrow f(x)$ es decreciente
- Si $a > 1 \rightarrow f(x)$ es creciente



1.6 Funciones de proporcionalidad inversa (Hipérbolas) $f(x) = \frac{1}{x}$

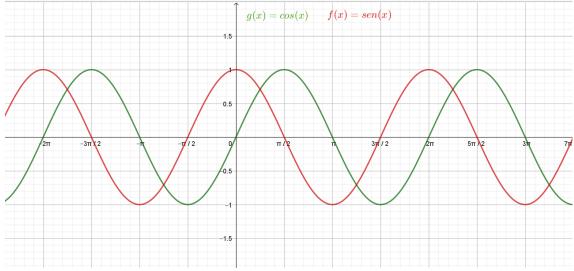
- Su Dominio es $Dom(f) = \mathbb{R} \{0\}$
- Su recorrido es $Im(f) = \mathbb{R} \{0\}$



1.7 Funciones trigonométricas.

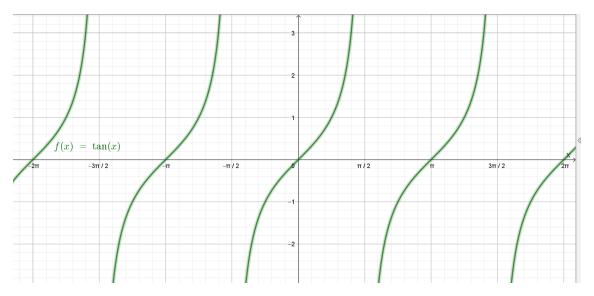
1.7.1 Seno y coseno

- Su dominio es $Dom(f) = \mathbb{R}$
- Su recorrido es Im(f) = [-1,1]
- Son periódicas con periodo $T = 2\pi \rightarrow \begin{cases} sen(x) = sen(x + 2k\pi) \\ cos(x) = cos(x + 2k\pi) \end{cases}$



1.7.2 Tangente

- Su dominio es $Dom(f) = \mathbb{R} [\frac{\pi}{2} + k\pi]$, con $k \in \mathbb{Z}$
- Su recorrido es $Im(f) = \mathbb{R}$
- Es periódica de periodo $\pi \tan(x + \pi) = \tan(x)$
- Es una función impar



1.8 Ejemplos de funciones

En el siguiente enlace se pueden observar las gráficas de las funciones expuestas en los apartados anteriores.

https://www.geogebra.org/m/jf2fdyjt

2 Transformaciones de funciones

2.1 Desplazamiento lateral g(x) = f(x - h)

- La gráfica de la función g(x) = f(x h) es la misma que la de la función f(x) desplazada h unidades a la **derecha**
- La gráfica de la función g(x) = f(x + h) es la misma que la de la función f(x) desplazada h unidades a la **izquierda**

2.2 Desplazamiento vertical g(x) = f(x) + h

• La gráfica de la función g(x) = f(x) + h es la misma que la función f(x) desplazada h unidades hacia arriba

2.3 Simetría con respecto al eje 0X

• La función g(x) = -f(x) es la simétrica de la función f(x)) con respecto al eje OX

2.4 Simetría con respecto al eje OY

• La función g(x) = f(-x) es simétrica a la función f(x) con respecto al eje OY

2.5 Dilataciones horizontales

• La función g(x) = f(kx) es la dilatación horizontal de la función f(x) por un factor $\frac{1}{k}$

2.6 Dilataciones verticales

• La función $g(x) = k \cdot f(x)$ es la dilatación vertical de la función f(x) por un factor k

En el siguiente enlace podéis practicar con las transformaciones básicas

https://www.geogebra.org/m/vnenfdhj

3 Función inversa

La **función inversa** de una función f es otra función f^{-1} , tal que para cualquier valor de x de su dominio se cumple que:

Si
$$f(x) = b$$
, entonces $f^{-1}(b) = x$

- La función inversa de f(x) es la simétrica con respecto a la bisectriz del primer y tercer cuadrante (y = x)
- El dominio de la función inversa es el recorrido de la función f(x)
- En el siguiente enlace se muestra gráficamente el concepto de función simétrica https://www.geogebra.org/m/BJ2arpES

3.1 Cálculo de la función inversa de una función.

Calcula la función inversa de:

$$f(x) = 3x + 9$$

- Primero: Se expresa la función de la forma y = f(x) y se intercambia la x por la y en ambos miembros.
- Segundo: Despejamos la y de la expresión resultante y la sustituimos por $f^{-1}(x)$

Hacemos $y = f(x)$	y = 3x + 9
Intercambiamos x por y	x = 3y + 9
Despejamos y en función de x	$y = \frac{x - 9}{3}$
Sustituimos y por $f^{-1}(x)$	$f^{-1}(x) = \frac{x - 9}{3}$

4 Operaciones con funciones

Si se consideran dos funciones, f y g, cuyos dominios son Dom(f) y Dom(g), respectivamente:

• La suma de funciones f y g es otra función, f + g, tal que, para cualquier valor, x, que pertenece a los dominios de ambas funciones se cumple que:

$$(f+g)(x) = f(x) + g(x)$$

• El **producto de funciones** f y g es otra función, $f \cdot g$, tal que, para cualquier valor, x, que pertenece a los dominios de ambas funciones se cumple que:

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

• La división de funciones f y g es otra función, $\frac{f}{g}$, tal que, para cualquier valor, x, que pertenece a los dominios de ambas funciones se cumple que:

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, con \ g(x) \neq 0$$

4.1 Ejemplo de operaciones con funciones

Dadas las funciones $f(x) = x^2 - 2x$ y $g(x) = \frac{3}{x}$, calcula el valor de las siguientes operaciones con funciones en los valores indicados.

a)
$$(f+g)(1)$$

b)
$$(f \cdot g)(2)$$

c)
$$\left(\frac{f}{g}\right)(-1)$$

Primero. Se determinan las funciones que resultan a operar

a)
$$(f+g)(x) = f(x) + g(x) = x^2 - 2x + \frac{3}{x} = \frac{x^3 - 2x^2 + 3}{x}$$

b)
$$(f \cdot g)(x) = f(x) \cdot g(x) = (x^2 - 2x) \cdot \frac{3}{x} = \frac{3x^2 - 6x}{x} = 3x - 6$$

c)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\left(x^2 - 2x\right)}{\frac{3}{x}} = \frac{x^3 - 2x^2}{3}$$

Segundo. Se halla el valor de las funciones resultantes sustituyendo x por su valor en cada caso.

a)
$$(f+g)(1) = \frac{1^3-2\cdot 1^2+3}{1} = 2$$

b)
$$(f \cdot g)(2) = 3 \cdot 2 - 6 = 0$$

c)
$$\left(\frac{f}{g}\right)(-1) = \frac{(-1)^3 - 2 \cdot (-1)^2}{3} = -1$$

5 Composición de funciones

Dadas dos funciones, f y g, se llama función compuesta de f con g a la función $(g \circ f)(x)$ que cumple que:

$$(g \circ f)(x) = g[f(x)]$$

La expresión $(g \circ f)(x)$ se lee "f compuesta con g de x" (Se lee de derecha a izquierda)

• En general $(g \circ f)(x)$ es distinto que $(f \circ g)(x)$, por tanto la composición de funciones no es conmutativa.

5.1 Ejemplo de composición de funciones

Dadas las funciones $f(x) = \sqrt{x+1}$ y $g(x) = -x^2 + 2$ calcula:

a)
$$(g \circ f)(x)$$

b)
$$(f \circ g)(x)$$

• Se aplica la definición de la composición de funciones

a)
$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x+1}) = -(\sqrt{x+1})^2 + 2 = -(x+1) + 2 = -x + 1 \rightarrow [(g \circ f)(x) = -x + 1]$$

b)
$$(f \circ g)(x) = f(g(x)) = f(-x^2 + 2) = \sqrt{-x^2 + 2 + 1} = \sqrt{-x^2 + 3} \rightarrow (f \circ g)(x) = \sqrt{-x^2 + 3}$$

6 Ejercicios

6.1 Calcular la función inversa de las siguientes funciones

a)
$$f(x) = -\frac{x}{2} + 1$$

b)
$$f(x) = -x^2 + 4$$

c)
$$f(x) = \sqrt{\frac{x}{2} - 2}$$

d)
$$f(x) = \sqrt[3]{x^2 - 1}$$

6.2 Halla el valor de las siguientes funciones en los puntos que se indican teniendo en cuenta que:

$$f(x) = \sqrt{x}$$
 $g(x) = (x^2 + 3)/(x + 1)$

a)
$$(f \cdot g)(4)$$

b)
$$\left(\frac{f}{g}\right)(-1)$$

c)
$$(f^2)(2)$$

d)
$$\left(\frac{g}{f}\right)$$
 (9)

6.3 Sean $f(x) = x^2$ y $g(x) = \frac{x-1}{x}$ calcula

a)
$$(f \circ g)(x)$$

b)
$$(g \circ f)(x)$$

c)
$$(f \circ f)(x)$$

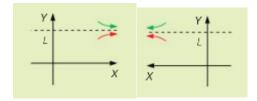
d)
$$(g \circ g)(x)$$

7 Límites de funciones

7.1 Límite de una función en el infinito

• El límite de una función f(x) cuando x tiende a $+\infty$ es el número real L cuando para valores grandes de x los valores de la función se aproximan al número real L.

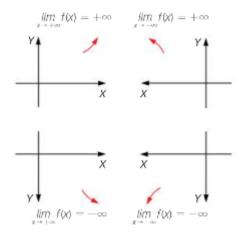
$$\lim_{x\to +\infty} f(x) = L$$



- $\lim_{x \to +\infty} f(x) = +\infty$ si los valores de la función crecen cada vez más.
- $\lim_{x \to +\infty} f(x) = -\infty$ si los valores de la función decrecen cada vez más.
- El límite de una función f(x) cuando x tiende a $-\infty$ es el número real L cuando para valores pequeñós de x los valores de la función se aproximan al número real L.

$$\lim_{x \to -\infty} f(x) = L$$

- $\lim_{x \to -\infty} f(x) = +\infty$ si los valores de la función crecen cada vez más.
- $\lim_{x \to -\infty} f(x) = -\infty$ si los valores de la función decrecen cada vez más.



7.1.1 <u>Cálculo de límites en el infinito</u>

7.1.1.1 Límite de potencias

$$\lim_{x \to +\infty} x^k = f(x) = \begin{cases} +\infty, & \text{si } k > 0 \\ 1, & \text{si } k = 0 \\ 0, & \text{si } k < 0 \end{cases}$$

$$\lim_{x \to -\infty} x^n = f(x) = \begin{cases} +\infty, & \text{si } n \text{ par} \\ -\infty, & \text{si } n \text{ impar} \end{cases} \to n \in \mathbb{N}$$

7.1.1.2 Funciones polinómicas

$$\lim_{x \to \infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

En este caso tenemos que tener en cuenta los signos de los coeficientes

Si
$$a_n > 0 \to \lim_{x \to \infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = +\infty$$

Si $a_n < 0 \to \lim_{x \to \infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = -\infty$

$$\lim_{x \to \infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

En este caso tenemos que tener en cuenta los signos de los coeficientes y los exponentes

Si
$$a_n > 0$$
 y n es par $\to \lim_{x \to -\infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = +\infty$

Si
$$a_n > 0$$
 y n es impar $\rightarrow \lim_{x \to -\infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = -\infty$

Si
$$a_n < 0$$
 y n es par $\to \lim_{n \to \infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = -\infty$

Si
$$a_n < 0$$
 y n es impar $\rightarrow \lim_{x \to -\infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = +\infty$

Ejemplos:

$$\lim_{x \to -\infty} 3x^2 - 2x + 1 = +\infty$$

$$\lim_{x \to -\infty} -3x^2 - 2x + 1 = -\infty$$

$$\lim_{x \to -\infty} 3x^5 - 2x + 1 = -\infty$$

$$\lim_{x \to -\infty} -3x^5 - 2x + 1 = +\infty$$

7.1.1.3 Funciones racionales

$$\lim_{x \pm \infty} \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0}{b_n x^n + b x^{n-1} + \dots + b_0}$$

• Si
$$n > m \to \lim_{x \to \pm \infty} \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0}{b_n x^n + b_n x^{n-1} + \dots + b_0} = 0$$

• Si
$$n = m \to \lim_{x \to \pm \infty} \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0}{b_n x^n + b_n x^{n-1} + \dots + b_0} = \frac{a_m}{b_n}$$

• Si $m > n \lim_{x \to \pm \infty} \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0}{b_n x^n + b_n x^{n-1} + \dots + b_0} = \infty$ Para saber el signo del infinito hay que hacer consideraciones de signo

$$\operatorname{Si} m > n \rightarrow \begin{cases} \lim\limits_{x \to +\infty} \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0}{b_n x^n + b x^{n-1} + \dots + b_0} = +\infty \cdot \operatorname{Signo}(a_m) \\ \lim\limits_{x \to -\infty} \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0}{b_n x^n + b x^{n-1} + \dots + b_0} = \begin{cases} +\infty \cdot \operatorname{Signo}(a_m) \sin m - n \operatorname{es } par \\ -\infty \cdot \operatorname{Signo}(a_m) \sin m - n \operatorname{es } impar \end{cases}$$

$\lim_{x \to +\infty} \frac{x^2 - 2x + 1}{2x^3 + 3x - 5} = 0$	$\lim_{x \to +\infty} \frac{x^2 - 2x + 1}{2x^2 + 3x - 5} = \frac{1}{2}$	$\lim_{x \to +\infty} \frac{x^3 - 2x + 1}{2x^2 + 3x - 5} = +\infty$
$\lim_{x \to -\infty} \frac{x^2 - 2x + 1}{2x^3 + 3x - 5} = 0$	$\lim_{x \to -\infty} \frac{4x^2 - 2x + 1}{2x^2 + 3x - 5} = 2$	$\lim_{x \to +\infty} \frac{-3x^3 - 2x + 1}{2x^2 + 3x - 5} = -\infty$
$\lim_{x \to +\infty} \frac{-x^3 - 2x + 1}{2x^6 + 3x - 5} = 0$	$\lim_{x \to +\infty} \frac{-8x^3 - 2x + 1}{2x^3 + 3x - 5} = -4$	$\lim_{x \to -\infty} \frac{x^4 - 2x + 1}{2x^2 + 3x - 5} = +\infty$
$\lim_{x \to +\infty} \frac{1}{2x^6 + 3x - 5} = 0$	$\lim_{x \to +\infty} \frac{4x^2 - 2x + 1}{2x^2 + 3x - 5} = 2$	$\lim_{x \to -\infty} \frac{x^3 - 2x + 1}{2x^2 + 3x - 5} = -\infty$

Operaciones con límites

•
$$\lim_{x \to \pm \infty} (f(x) + g(x)) = \lim_{x \to \pm \infty} f(x) + \lim_{x \to \pm \infty} g(x)$$
•
$$\lim_{x \to \pm \infty} (f(x) - g(x)) = \lim_{x \to \pm \infty} f(x) - \lim_{x \to \pm \infty} g(x)$$

•
$$\lim_{x \to +\infty} (f(x) - g(x)) = \lim_{x \to +\infty} f(x) - \lim_{x \to +\infty} g(x)$$

•
$$\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = \lim_{x \to \pm \infty} f(x) \cdot \lim_{x \to \pm \infty} g(x)$$
•
$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)}$$

•
$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)}$$

•
$$\lim_{x \to \pm \infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to \pm \infty} f(x)}$$

•
$$\lim_{x \to \pm \infty} \log_a f(x) = \log_a \lim_{x \to \pm \infty} f(x)$$

•
$$\lim_{x \to \pm \infty} (f(x)^{g(x)}) = (\lim_{x \to \pm \infty} f(x))^{\lim_{x \to \pm \infty} g(x)}$$

Indeterminaciones

- $(\infty) (\infty)$
- 0.∞

Resolución de indeterminaciones

Indeterminaciones $\frac{\infty}{2}$

Calcular el siguiente límite

a)
$$\lim_{x \to +\infty} \frac{2x-1}{\sqrt[3]{x^2-3n+1}} = \lim_{x \to +\infty} \frac{2x}{\sqrt[3]{x^2}} = \lim_{x \to +\infty} \frac{2x}{\sqrt[3]{3}} = \lim_{x \to +\infty} 2x^{\left(1-\frac{2}{3}\right)} = \lim_{x \to +\infty} 2x^{\frac{1}{3}} = +\infty$$

b)
$$\lim_{x \to -\infty} \left(\frac{\sqrt[3]{x^2 - 3n + 1}}{x^2 + 1} \right) = \lim_{x \to -\infty} \left(\frac{\sqrt[3]{x^2}}{x^2} \right) = \lim_{x \to -\infty} \left(\frac{x^{\frac{2}{3}}}{x^2} \right) = \dots = 0$$

Indeterminaciones $\infty - \infty$ (Se transforman en indeterminaciones $\frac{\infty}{\infty}$

$$\lim_{x \to \infty} \left(\frac{2x^2}{2x+1} - \frac{x^3}{x^2+1} \right) = \lim_{x \to \infty} \left(\frac{2x^2(x^2+1) - x^3(2x+1)}{(2x+1)(x^2+1)} \right) = \lim_{x \to \infty} \left(\frac{2x^4 + 2x^2 - 2x^4 - x^3}{2x^3 + 2x + x^2 + 1} \right) = \lim_{x \to \infty} \left(\frac{-x^3 + 2x^2}{2x^3 + 3x^2 + 1} \right) = -\frac{1}{2}$$

•
$$\lim_{x \to \infty} \left(\sqrt{x - 2} - \sqrt{x} \right) = \lim_{x \to \infty} \left[\frac{\left(\sqrt{x - 2} - \sqrt{x} \right) \cdot \left(\sqrt{x - 2} + \sqrt{x} \right)}{\sqrt{x - 2} + \sqrt{x}} \right] = \lim_{x \to \infty} \left(\frac{x - 2 - x}{\sqrt{x - 2} + \sqrt{x}} \right) = \lim_{x \to \infty} \left(\frac{-2}{\sqrt{x} + \sqrt{x}} \right) = \dots = \boxed{0}$$

Indeterminaciones del tipo 1^{∞}

Hay que utilizar el concepto de la definición del número e. El número e se puede definir de la siguiente forma

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x \tag{2}$$

Para calcular los límites del tipo 1^{∞} hay que proceder de la siguiente forma. Supongamos que queremos calcular el siguiente límite

$$\lim_{x \to +\infty} \left(\frac{3x-1}{3x+2} \right)^{x^2} \tag{3}$$

Se transforma la expresión de la ecuación (3) en una expresión como la de la ecuación (2). Para ello se suma y se resta 1en la expresión que está dentro del paréntesis y se opera usando las propiedades de las potencias

$$\lim_{x \to +\infty} \left(\frac{3x - 1}{3x + 2} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{3x - 1}{3x + 2} - 1 \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{3x - 1 - (3x + 2)}{3x + 2} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{-3}{3x + 2} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{3x + 2}{-3}} \right)^{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac$$

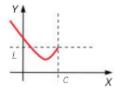
Dado que el número de pasos que se han dado en el proceso (4) para resolver el límite es amplio y siempre son los mismos, existe una fórmula para calcular dichos límites

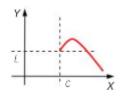
- Si $\lim_{x \to +\infty} f(x) = 1$ y $\lim_{x \to +\infty} g(x) = \infty$, entonces se cumple que: $\lim_{x \to +\infty} (f(x))^{g(x)} = e^{\lim_{x \to +\infty} (f(x)-1) \cdot g(x)}$

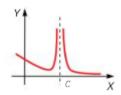
Límites de una función en un punto

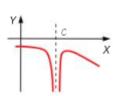
Límites laterales 7.5.1

Para estudiar cómo se aproxima una función a un punto hay que considerar la aproximación por la izquierda, don valores menores que él, y por la derecha, con valores mayores. Estas aproximaciones se llaman límites laterales en un punto.









El límite de una función f(x) cuando x tiende a un punto c por la izquierda es un número real L cuando para valores de x muy próximos a c y menores que c los valores de la función se aproximan a L.

$$\lim_{x \to c^{-}} f(x) = L$$

El límite de una función f(x) cuando x tiende a un punto c por la derecha es un número real L cuando para valores de x muy próximos a c y mayores que c los valores de la función se aproximan a L.

$$\lim_{x \to c^+} f(x) = L$$

 $\lim_{x\to c^+} f(x) = +\infty \ o \quad \lim_{x\to c^{\wedge}-} +\infty \ \text{cuando para valores próximos a c, menores o mayores que c,}$ respectivamente los valores de la función crecen cada vez más

• $\lim_{x \to c^+} f(x) = -\infty$ o $\lim_{x \to c^{\wedge}-} -\infty$ cuando para valores próximos a c, menores o mayores que c, respectivamente los valores de la función decrecen cada vez más

7.5.2 Límite de una función en un punto

El límite de una función f(x) cuando x tiende a un punto c es un número real L cuando se cumple:

$$\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = L$$

En este caso decimos que:

$$\lim_{x\to C}f(x)=L$$