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LENS and MIRROR NOTES 
 
 
We begin with the fundamental equation for both (thin) lenses and mirrors; this can be derived in a variety 
of ways, some complicated, some just using geometry: 
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Here the symbol s is used for a distance; this is common notation in physics texts. The focal length is f. 
The distances are measured from the lens or mirror, with sign conventions we will discuss below, along 
with how we find f (for now assume it is given). We will also need the magnification equation, which is 
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Figure 1. Graphs of the image location (A and a) and magnification (B and b) as a function of the 
object distance from the lens or mirror, using Eqs(1.1) and (1.2).  

 
In this example, the focal length is 4, and we see that the image location graph A approaches this value 
as the object distance increases. On the other hand, as the object distance decreases toward f, the image 
distance increases until it is undefined when the object is exactly at f. Then, as the object distance 
continues to decrease toward zero, the image location is shown in graph a, and it is negative, so the 
image is virtual in this region. 
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The magnification graph B is negative whenever the object distance is greater than f. This means that 
any real image (i.e., when the image distance is positive) is inverted. Notice that, as the object distance 
decreases toward f, the magnification increases, although the image is still inverted. At exactly 2f, the 
magnification is -1. Between 2f and f the image is larger and still inverted. In region b the image is now 
virtual, right-side-up, and magnified, until at zero object distance the magnification is again unity. 
 
We can summarize this as follows: Region a, virtual image; Region b, image upright, larger; Region A, 
real image; Region B, image inverted, larger if object distance is less than 2f, else equal (at 2f) or smaller. 
In short, negative image location means virtual image, and negative magnification means inverted image. 
 
The equations above are based on the paraxial assumption. This means that “all rays that diverge from 
the object make a small angle with the principal axis.”  In this sketch, the principal axis is the horizontal 
axis through the center of the mirror. 
 
 

 
 
 
With this assumption, the math simplifies considerably, including the use of small-angle trig function 
approximations (similar to that used in the linearized pendulum analysis). We can then show that the focal 
lengths of a spherical mirror and a thin spherical lens will be: 
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Note that the spherical lens has two radii, since the lens can be thought of as the intersection of two 
spheres (or circles, in 2D). If one side of the lens is flat (a plane) then its corresponding radius is infinite. 
The index of refraction n is for the lens material, and we assume that the lens is in air (so its n = 1). If the 
lens isn’t “thin” then a correction term is added to this expression. Combining the lens part of Eq(1.3) with 
Eq( 1.1) gives what is called the “lensmaker’s equation.” 
 
Now we need to get organized as to the conventions for measuring the several quantities. These vary 
from one text to another, but the overall results are not ambiguous, since the light rays do not know what 
measurement convention we are using, and they will do what they are supposed to do. 
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light travels from left to right toward a lens or mirror 

 
 
s-object  positive if in front of (to the left of) a mirror or lens. 
                          negative if in back of (to the right of) a lens (no meaning for mirror) 
  [this is positive for practical problems] 
 
s-image  positive if the image is in front of (to the left of) a mirror   real 
                          negative if the image is apparently behind (to the right of) a mirror virtual 
  positive if the image is in back of (to the right of) a lens   real 
  negative if the image is apparently in front of (to the left of) a lens  virtual 
 
f, R  for mirrors; both positive if center of curvature is in front of mirror  concave 
   “       “                negative  “                     “               back     “  convex 
 
f-lens  positive for converging lens      convex  
  negative for diverging lens      concave 
 
R1, R2  positive if the center of curvature is in back of (to the right of) the lens 
  negative  “         “                 “               front  “              left    “ 
  [note that for the usual convex lens, one R will be positive, the other negative] 
 
m  positive if the image is upright  
  negative         “         “   inverted 
  less than unity, image is smaller 
  more         “          “          larger 
 
 
Note that if an image is real it is inverted. This follows from these conventions and Eq (1.2), since the 
image distance will be positive. Similarly, if an image is virtual, it is upright. Eq (1.1) also reveals that, if an 
object is at a (positive) infinite distance, then the image will be at the focal distance f. However, Eq(1.2) 
shows that when this happens, the image has zero magnification (it is a point). Hence, “focal point.” 
 
We can use Eq(1.1) and (1.2) to discover some interesting things about a convex mirror. According to the 
conventions, the focal length f of a convex mirror is negative. In Eq(1.1) this means that the image 
distance must be negative, so that the image is always virtual. In Eq(1.2) we see that a negative f gives a 
positive m, so that the image is upright. Also in Eq(1.2), since the denominator is greater than unity, the 
image must be smaller than the object. 
 
Finally, we consider the following table of object and image characteristics for a concave mirror. It can be 
demonstrated that the same results hold for a thin spherical lens. Essentially, with the appropriate choice 
of parameters, a concave mirror equals a convex (converging) lens, and a convex mirror equals a 
concave (diverging) lens. 
 

Location Type Location Orientation Size 

∞ > s-object > 2f real f < s-image < 2f inverted smaller 

s-object = 2f real s-image = 2f inverted equal 

f < s-object < 2f real ∞ > s-image > 2f inverted larger 

s-object = f undefined undefined undefined undefined 

s-object < f virtual s-image > s-object upright larger 

 


