

CURVAS SOBRE SUPERFICIES CON GEOGEBRA

Podemos representar curvas sobre superficies de distintas formas. En este caso representaremos una curva sobre una superficie mediante la ecuación implícita o explícita de la superficie y las ecuaciones paramétricas de la curva. A continuación representaremos un astroide sobre un paraboloide.

- 1. Escribimos en la barra de entrada la ecuación implícita o explícita de la superficie. En este caso $z = x^2 + y^2$.
- 2. Las ecuaciones paramétricas de la astroide en el plano son:

$$x(t) = 2 sen^3(t)$$

$$y(t) = 2 \cos^3(t)$$

con t entre 0 y 2pi.

3. Para representar la curva sobre el paraboloide, escribimos una curva en el espacio. Las coordenadas x(t) e y(t) son las del astroide en el plano y la z(t) viene dada por la ecuación del paraboloide, $z(t) = (2 \, \text{sen}^3(t))^2 + (2 \, \text{cos}^3(t))^2$, con x(t) e y(t) los valores de la curva en el plano. Escribimos en la barra de entrada:

Curva(2 sen³(t), 2 cos³(t), (2 sen³(t))²+(2 cos³(t))², t, 0, 2pi).

A continuación representaremos una flor sobre una esfera.

- 1. Escribimos en la barra de entrada la ecuación implícita o explícita de la superficie. En este caso $x^2 + y^2 + z^2 = 1$.
- 2. Las ecuaciones paramétricas de la flor en el plano son:

$$x(t) = 2 sen(6t) cos(t)$$

$$y(t) = 2 sen(6t) sen(t)$$

con t entre 0 y 2pi.

3. Para representar la curva sobre la esfera, escribimos una curva en el espacio. Las coordenadas x(t) e y(t) son las de la flor en el plano y la z(t) viene dada por la ecuación de la esfera. Despejamos z(t) de la ecuación implícita y obtenemos $z(t) = (4-(2 \text{ sen}(6t) \cos(t))^2-(2 \text{ sen}(6t) \sin(t))^2)^{1/2}$ y $z(t) = -(4-(2 \text{ sen}(6t) \cos(t))^2-(2 \text{ sen}(6t) \sin(t))^2)^{1/2}$. Escribimos en la barra de entrada:

Curva(2 sen(6t) cos(t), 2 sen(6t) sen(t), $(4-(2 \text{ sen}(6t) \text{ cos}(t))^2-(2 \text{ sen}(6t) \text{ sen}(t))^2)^{1/2}$, t, 0, 2pi)

Curva(2 sen(6t) cos(t), 2 sen(6t) sen(t), -(4-(2 sen(6t) cos(t))²-(2 sen(6t) sen(t))²)^{1/2}, t, 0, 2pi).