Colegio Marista "La Inmaculada" de Granada - Profesor Daniel Partal García - www.danipartal.net

Asignatura: Matemáticas I - 1ºBachillerato

Examen: Tema 5 Matemáticas I - Modelo 2 + Acumulado

página 1/2

Instrucciones:

- a) Duración: 1 hora
- **b)** Tienes que **elegir** entre realizar únicamente los cuatro ejercicios de la **Opción A** o realizar únicamente los cuatro ejercicios de la **Opción B**. Indica, en la primera hoja donde resuelves el examen, la opción elegida.
- c) La puntuación de cada pregunta está indicada en la misma.
- **d)** Contesta de forma razonada y escribe a bolígrafo (no a lápiz) ordenadamente y con letra clara. Las faltas de ortografía, la mala presentación y no explicar adecuadamente las operaciones pueden restar hasta un máximo de 1 punto de la nota final.
- **e)** Se permitirá el uso de calculadoras que no sean programables, gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.

Opción A

Ejercicio 1.- a) [0,5 puntos] Expresa el vector $\vec{u} = (0,8)$ del espacio vectorial $(\mathbb{R}^2, +, \cdot)$ como combinación lineal de los vectores $\vec{v} = (3,-5)$, $\vec{w} = (6,-2)$.

- **b)** [1 punto] El triángulo ABC es rectángulo en A. Sus vértices son A(3,5), B(1,3), C(m,10). Calcula el valor de m aplicando propiedades de vectores (no usar Pitágoras).
- c) [1 punto] Demuestra que si \vec{u} y \vec{v} son vectores en V^2 y tienen el mismo módulo, entonces los vectores suma $(\vec{u}+\vec{v})$ y diferencia $(\vec{u}-\vec{v})$ son perpendiculares. Pon un ejemplo que demuestre analíticamente esa información y resuelve el ejemplo.

Ejercicio 2.- a) [1,5 puntos] Calcula el valor de m para que los vectores $\vec{u} = (2,0,-1)$, $\vec{v} = (1,m,2)$, $\vec{w} = (3,1,m)$ sean linealmente independientes.

b) [1 punto] Resuelve $\ln(sen x) - \ln(\cos x) = \ln(\frac{1}{2})$

Ejercicio 3.- Dados los vectores \vec{u} =(3,4) , \vec{v} =(-2,5) , \vec{w} =(-4,3) .

- a) [0,5 puntos] Normalizarlos.
- **b)** [1 punto] Hallar el producto escalar $\vec{u} \cdot \vec{v}$, $\vec{u} \cdot \vec{w}$.
- c) [1 punto] ¿Qué ángulo forman los vectores \vec{u} y \vec{v} , y los vectores \vec{u} y \vec{w} ?

Ejercicio 4.- a) [1,5 puntos] Sea un vector $\vec{u} = (x, y)$. Su módulo es el doble del módulo del vector $\vec{v} = (3,4)$. El vector \vec{u} forma 45° con el vector \vec{v} . Calcula las coordenadas del vector \vec{u} .

b) [1 punto] Dado el vector \vec{v} =(-1,4) y el punto A de coordenadas (2,-1) . Determina las coordenadas de un punto B que cumpla que el vector \vec{AB} sea equipolente al vector \vec{v} .

Colegio Marista "La Inmaculada" de Granada - Profesor Daniel Partal García - www.danipartal.net

Asignatura: Matemáticas I - 1ºBachillerato

Examen: Tema 5 Matemáticas I - Modelo 2 + Acumulado

página 2/2

Opción B

Ejercicio 1.- a) [0,5 puntos] Calcula el ángulo que forman $\vec{u} = (2 \cdot \sqrt{2}, -2)$ y $\vec{v} = (\sqrt{2}, -1)$.

- **b)** [1 punto] Calcula valor de b para que los vectores $\vec{u} = (3,b)$ y $\vec{v} = (2,-1)$ formen un ángulo de 60°.
- c) [1 punto] Sea el sistema de ecuaciones $\begin{cases} x+y+(m+1)z=2\\ x+(m-1)y+2z=1\\ 2x+my+z=-1 \end{cases}$. Discutir sus posibles soluciones según el valor del parámetro $m\in\mathbb{R}$.

Ejercicio 2.- Sea \vec{u} =(2,5) . Calcular.

- a) [0,5 puntos] Un vector ortogonal a \vec{u} y de módulo unidad.
- **b)** [1 punto] La proyección ortogonal de $\vec{v} = (1, -2)$ sobre \vec{u}
- c) [1 punto] Las coordenadas de \vec{u} en la base formada por los vectores $\vec{w} = (4,3)$ y $\vec{t} = (5,2)$

Ejercicio 3.- Sea el polígono irregular de cuatro lados, con vértices consecutivos en los puntos A(2,3) , B(4,-5) , C(8,5) y D(5,1) .

- a) [1 punto] Representar el polígono gráficamente y obtener su perímetro (trabajar con raíces, no usar decimales).
- b) [0,5 puntos] $\vec{AB} \cdot \vec{AD}$
- c) [0,5 puntos] Ángulo en el vértice A
- d) [0,5 puntos] $|\vec{BD}|$

Ejercicio 4.- Dado el triángulo de vértices A(x,2), B(1,3), C(2,-1) .

- a) [1 punto] Halla el valor de x para que el triángulo ABC sea rectángulo en el vértice C (no usar Pitágoras).
- b) [1,5 puntos] Halla el valor de x para que el triángulo ABC sea isósceles y su lado desigual sea \overline{AC} .