Nama: Fatimah Annuha

NIM: 24030130106

EMT untuk Perhitungan Aljabar

Pada notebook ini Anda belajar menggunakan EMT untuk melakukan berbagai perhitungan terkait dengan materi atau topik dalam Aljabar. Kegiatan yang harus Anda lakukan adalah sebagai berikut:

- Membaca secara cermat dan teliti notebook ini;
- Menerjemahkan teks bahasa Inggris ke bahasa Indonesia;
- Mencoba contoh-contoh perhitungan (perintah EMT) dengan cara meng-ENTER setiap perintah EMT yang ada (pindahkan kursor ke baris perintah)
- Jika perlu Anda dapat memodifikasi perintah yang ada dan memberikan keterangan/penjelasan tambahan terkait hasilnya.
- Menyisipkan baris-baris perintah baru untuk mengerjakan soal-soal Aljabar dari file PDF yang saya berikan;
- Memberi catatan hasilnya.
- Jika perlu tuliskan soalnya pada teks notebook (menggunakan format LaTeX).
- Gunakan tampilan hasil semua perhitungan yang eksak atau simbolik dengan format LaTeX. (Seperti contoh-contoh pada notebook ini.)

Contoh pertama

Menyederhanakan bentuk aljabar:

$$6x^{-3}y^5 \times -7x^2y^{-9}$$

$$-\frac{42}{x\,y^4}$$

Menjabarkan:

$$(6x^{-3} + y^5)(-7x^2 - y^{-9})$$

$$\$$
 >\$&\text{showev('expand((6*x^(-3)+y^5)*(-7*x^2-y^(-9))))}

$$expand\left(\left(-\frac{1}{y^9} - 7x^2\right)\left(y^5 + \frac{6}{x^3}\right)\right) = -7x^2y^5 - \frac{1}{y^4} - \frac{6}{x^3y^9} - \frac{42}{x^3}$$

Baris Perintah

Baris perintah Euler terdiri dari satu atau beberapa perintah Euler yang diikuti dengan titik koma ";" atau koma ",". Tanda titik koma mencegah hasil perintah ditampilkan, sedangkan koma setelah perintah terakhir dapat dihilangkan.

Baris perintah berikut ini hanya akan mencetak hasil dari ekspresi, bukan penugasan atau perintah format.

```
>r:=2; h:=4; pi*r^2*h/3
```

16.7551608191

Perintah harus dipisahkan dengan spasi. Baris perintah berikut ini mencetak dua hasil sekaligus.

```
>pi*2*r*h, %+2*pi*r*h // Ingat tanda % menyatakan hasil perhitungan terakhir sebelumnya
```

50.2654824574 100.530964915 Baris perintah dieksekusi sesuai urutan pengguna menekan tombol return. Setiap kali baris kedua dieksekusi, akan diperoleh nilai baru.

```
>x := 1;
>x := cos(x) // nilai cosinus (x dalam radian)
```

0.540302305868

```
>x := cos(x)
```

0.857553215846

If two lines are connected with "..." both lines will always execute simultaneously.

```
>x := 1.5; ...
>x := (x+2/x)/2, x := (x+2/x)/2, x := (x+2/x)/2,
```

- 1.41666666667
- 1.41421568627
- 1.41421356237

Ini juga merupakan cara yang baik untuk membagi perintah yang panjang menjadi dua baris atau lebih. Caranya dengan menekan Ctrl+Return untuk membagi baris menjadi dua pada posisi kursor saat ini, atau Ctlr+Back untuk menggabungkan kedua baris.

Untuk melipat semua baris ganda, tekan Ctrl+L. Kemudian garis-garis berikutnya hanya akan terlihat, jika salah satu dari mereka memiliki fokus. Untuk melipat satu baris ganda, mulai baris pertama dengan "%+".

```
>%+ x=4+5; ...
```

A line starting with %% will be completely invisible.

81

Euler mendukung perulangan dalam baris perintah, selama perulangan tersebut masuk ke dalam satu baris tunggal atau beberapa baris. Dalam program, tentu saja pembatasan ini tidak berlaku. Untuk informasi lebih lanjut, baca pengantar berikut ini.

```
>x=1; for i=1 to 5; x := (x+2/x)/2, end; // menghitung akar 2
```

- 1.5
- 1.4166666667
- 1.41421568627
- 1.41421356237
- 1.41421356237

Tidak masalah untuk menggunakan baris ganda. Pastikan baris diakhiri dengan "...".

```
>x := 1.5; // comments go here before the ...
>repeat xnew:=(x+2/x)/2; until xnew~=x; ...
> x := xnew; ...
>end; ...
>x,
```

1.41421356237

Struktur bersyarat juga bisa digunakan.

```
>if E^pi>pi^E; then "Thought so!", endif;
```

Thought so!

Ketika menjalankan perintah, kursor dapat berada di posisi mana pun dalam baris perintah. Kita dapat kembali ke perintah sebelumnya atau melompat ke perintah berikutnya dengan tombol panah, atau mengklik bagian komentar di atas perintah untuk membuka perintah tersebut.

Ketika kita menggerakkan kursor di sepanjang baris, pasangan tanda kurung atau tanda kurung pembuka dan penutup akan disorot. Setelah tanda kurung pembuka dari fungsi sqrt(), baris status akan menampilkan teks bantuan untuk fungsi tersebut. Jalankan perintah dengan tombol return.

```
>sqrt(sin(10°)/cos(20°))
```

0.429875017772

Untuk melihat bantuan untuk perintah terbaru, dapat buka jendela bantuan dengan F1 dan memasukkan teks yang akan dicari. Pada baris kosong, bantuan untuk jendela bantuan akan ditampilkan. Tombol Escape bisa digunakan untuk mengosongkan baris, atau menutup jendela bantuan.

Kita dapat mengklik dua kali pada perintah apa pun untuk membuka bantuan untuk perintah ini. Coba klik dua kali perintah exp di bawah ini pada baris perintah.

>exp(log(2.5))

2.5

Kita juga dapat menyalin dan menempel di Euler. Gunakan Ctrl-C dan Ctrl-V untuk ini. Untuk menandai teks, seret mouse atau gunakan shift bersamaan dengan tombol kursor. Selain itu, kita dapat menyalin tanda kurung yang disorot.

Sintaksis Dasar

Euler mengetahui fungsi matematika umum. Seperti yang telah kita lihat di atas, fungsi trigonometri yang dapat bekerja dalam radian atau derajat. Untuk mengonversi ke derajat, tambahkan simbol derajat (dengan tombol F7) ke nilai, atau gunakan fungsi rad(x). Fungsi akar kuadrat disebut sqrt dalam Euler. Tentu saja, $x^{(1/2)}$ juga dapat digunakan.

Untuk mengatur variabel, gunakan "=" atau ":=", dimana pengantar ini memilih ":=" demi kejelasan. Spasi tidak menjadi masalah, kecuali antar perintah yang memang perlu memerlukannya.

Beberapa perintah dalam satu baris dipisahkan dengan "," atau ";". Titik koma menekan output dari perintah. Pada akhir baris perintah, "," diasumsikan, jika ";" tidak ada.

30.65625

EMT menggunakan sintaks pemrograman untuk ekspresi. Untuk memasukkan

$$e^2 \cdot \left(\frac{1}{3 + 4\log(0.6)} + \frac{1}{7}\right)$$

kita harus mengatur tanda kurung yang benar dan menggunakan / untuk pecahan. Perhatikan tanda kurung yang disorot untuk mendapatkan bantuan. Perhatikan bahwa konstanta Euler e diberi nama E dalam EMT.

Hasil:

$$e^2 \cdot \left(\frac{1}{3 + 4\log(0.6)} + \frac{1}{7}\right)$$

8.77908249441

Untuk menghitung ekspresi yang rumit seperti

$$\left(\frac{\frac{1}{7} + \frac{1}{8} + 2}{\frac{1}{3} + \frac{1}{2}}\right)^2 \pi$$

kita harus memasukkannya dalam bentuk baris. Hasil:

$$\left(\frac{\frac{1}{7} + \frac{1}{8} + 2}{\frac{1}{3} + \frac{1}{2}}\right)^2 \pi$$

$$>((1/7 + 1/8 + 2) / (1/3 + 1/2))^2 * pi$$

23.2671801626

Letakkan tanda kurung di sekitar sub-ekspresi yang perlu dihitung terlebih dahulu. EMT membantu kita dengan menyorot ekspresi yang diselesaikan oleh tanda kurung penutup. Kita juga harus memasukkan nama "pi" untuk huruf Yunani pi.

Hasil dari perhitungan ini adalah angka floating point. Secara default dicetak dengan akurasi sekitar 12 digit. Pada baris perintah berikut, kita juga mempelajari bagaimana kita dapat merujuk ke hasil sebelumnya dalam baris yang sama.

>1/3+1/7, fraction %

0.47619047619 10/21

Perintah Euler dapat berupa ekspresi atau perintah primitif. Ekspresi tersusun dari operator dan fungsi. Jika diperlukan, ekspresi tersebut harus diberi tanda kurung untuk memastikan urutan eksekusi yang benar. Jika ragu, mengatur tanda kurung adalah ide yang bagus. EMT juga akan menampilkan tanda kurung pembuka dan penutup saat kita mengedit baris perintah.

$>(\cos(pi/4)+1)^3*(\sin(pi/4)+1)^2$

14.4978445072

Operator numerik Euler meliputi

- + unary atau operator plus
- unary atau operator minus
- *, / (perkalian dan pembagian)
- . untuk perkalian matriks
- a^b untuk a positif atau bilangan bulat b (a**b juga bisa

digunakan)untuk pemangkatan

n! operator faktorial

dan masih banyak lagi.

Berikut adalah beberapa fungsi yang mungkin kita perlukan, antara lain:

sin, cos, tan, atan, asin, acos, rad, deg

log, exp, log10, sqrt, logbase

bin, logbin, logfac, mod, floor, ceil, round, abs, sign

conj,re,im,arg,conj,real,complex

beta, betai, gamma, complexgamma, ellrf, ellf, ellrd, elle

bitand, bitor, bitxor, bitnot

Beberapa perintah memiliki alias, misalnya lu untuk log.

```
>ln(E^2), arctan(tan(0.5))
```

2

0.5

>sin(30°)

0.5

Pastikan untuk menggunakan tanda kurung (tanda kurung bulat), apabila ada keraguan tentang urutan eksekusi! Misalnya, 2^3^4 di EMT dianggap sebagai 2^(3^4), bukan (2^3)^4, sehingga tanda kurung penting untuk menghindari kesalahan.

```
>2^3^4, (2^3)^4, 2^(3^4)
```

2.41785163923e+24

4096

2.41785163923e+24

Tipe data utama dalam Euler adalah bilangan real. Bilangan real direpresentasikan dalam format IEEE dengan akurasi sekitar 16 digit desimal.

>longest 1/3

0.3333333333333333

Representasi ganda internal membutuhkan 8 byte.

>printdual(1/3)

>printhex(1/3)

5.555555555554*16^-1

String dalam Euler didefinisikan dengan "...".

```
> "A string can contain anything."
```

A string can contain anything.

String dapat digabungkan dengan \mid atau dengan +. Ini juga berfungsi dengan angka, yang dikonversi menjadi string dalam kasus tersebut.

```
>"The area of the circle with radius " + 2 + " cm is " + pi*4 + " cm^2."
```

The area of the circle with radius 2 cm is 12.5663706144 cm².

Fungsi cetak juga mengonversi angka ke string. Fungsi ini dapat mengambil sejumlah digit dan sejumlah tempat (0 untuk output padat), dan secara optimal satu unit.

```
>"Golden Ratio : " + print((1+sqrt(5))/2,5,0)
```

Golden Ratio: 1.61803

Ada string khusus bernama none, yang tidak akan dicetak. Dikembalikan oleh beberapa fungsi, ketika hasilnya tidak penting. (Dikembalikan secara otomatis, jika fungsi tidak memiliki pernyataan return).

>none

Untuk mengonversi string menjadi angka, cukup evaluasi string tersebut. Ini juga berlaku untuk ekspresi (lihat di bawah).

```
>"1234.5"()
```

1234.5

Untuk mendefinisikan vektor string, gunakan notasi vektor [...].

```
>v:=["affe","charlie","bravo"]
```

affe charlie bravo

Vektor string kosong dilambangkan dengan [none]. Vektor string dapat digabungkan.

```
>w:=[none]; w|v|v
```

```
affe
charlie
bravo
affe
charlie
bravo
```

String dapat berisi karakter Unicode. Secara internal, string ini berisi kode UTF-8. Untuk membuat string seperti itu, gunakan u"..." dan salah satu entitas HTML.

String Unicode dapat digabungkan seperti string lainnya.

```
>u"α = " + 45 + u"°" // pdfLaTeX mungkin gagal menampilkan secara benar
```

= 45°

Dalam komentar, entitas yang sama seperti , dll. dapat digunakan. Ini bisa menjadi alternatif yang cepat untuk Latex.

Ada beberapa fungsi untuk membuat atau menganalisis string unicode. Fungsi strtochar() akan mengenali string Unicode, dan menerjemahkannya dengan benar.

```
>v=strtochar(u"Ä is a German letter")
```

```
[196, 32, 105, 115, 32, 97, 32, 71, 101, 114, 109, 97, 110, 32, 108, 101, 116, 116, 101, 114]
```

Hasilnya adalah sebuah vektor angka Unicode. Fungsi kebalikannya adalah chartoutf().

```
>v[1]=strtochar(u"Ü")[1]; chartoutf(v)
```

```
Ü is a German letter
```

Fungsi utf() dapat menerjemahkan sebuah string dengan entitas dalam sebuah variabel menjadi sebuah string Unicode.

```
>s="We have α=β."; utf(s) // pdfLaTeX mungkin gagal menampilkan secara benar
```

```
We have =.
```

Dimungkinkan juga untuk menggunakan entitas numerik.

>u"Ähnliches"

Ähnliches

Nilai Boolean

Nilai Boolean direpresentasikan dengan 1= benar atau 0= salah dalam Euler. String dapat dibandingkan, seperti halnya angka.

>2<1, "apel"<"banana"

0

1

"and" adalah operator "&&" dan "or" adalah operator "||", seperti dalam bahasa C. (Kata "and" dan "or" hanya dapat digunakan dalam kondisi "if").

>2<E && E<3

Operator Boolean mematuhi aturan bahasa matriks.

```
>(1:10)>5, nonzeros(%)
```

```
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
[6, 7, 8, 9, 10]
```

Kita dapat menggunakan fungsi nonzeros() untuk mengekstrak elemen tertentu dari sebuah vektor. Pada contoh, kita menggunakan kondisional isprime(n).

```
>N=2|3:2:99 // N berisi elemen 2 dan bilangan2 ganjil dari 3 s.d. 99
```

```
[2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99]
```



```
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
```

Format output default EMT mencetak 12 digit. Untuk memastikan bahwa kita melihat format default, kita atur ulang formatnya.

>defformat; pi

3.14159265359

Secara internal, EMT menggunakan standar IEEE untuk double numbers dengan ketelitian sekitar 16 digit desimal. Untuk menampilkan semua digit tersebut, bisa menggunakan perintah "longestformat", atau operator "longest".

>longest pi

3.141592653589793

Berikut ini adalah representasi heksadesimal internal dari angka ganda.

>printhex(pi)

3.243F6A8885A30*16^0

Format output dapat diubah secara permanen dengan perintah format.

```
>format(12,5); 1/3, pi, sin(1)
```

0.33333

3.14159

0.84147

Defaultnya adalah format(12).

```
>format(12); 1/3
```

0.333333333333

Fungsi seperti "shortestformat", "shortformat", "longformat" bekerja untuk vektor dengan cara berikut.

```
>shortestformat; random(3,8)
```

```
    0.66
    0.2
    0.89
    0.28
    0.53
    0.31
    0.44
    0.3

    0.28
    0.88
    0.27
    0.7
    0.22
    0.45
    0.31
    0.91

    0.19
    0.46
    0.095
    0.6
    0.43
    0.73
    0.47
    0.32
```

Format default untuk skalar adalah format(12). Tetapi ini dapat diubah.

```
>setscalarformat(5); pi
```

3.1416

Fungsi "longestformat" juga menetapkan format skalar.

```
>longestformat; pi
```

3.141592653589793

Beberapa format output penting di EMT antara lain

```
shortestformat shortformat longformat, longestformat
format(length,digits) goodformat(length)
fracformat(length)
defformat
```

Ketelitian internal EMT sekitar 16 digit desimal sesuai standar IEEE, tetapi format output dapat diatur secara fleksibel sesuai kebutuhan.

```
>longestformat; pi,
```

3.141592653589793

```
>format(10,5); pi
```

3.14159

Defaultnya adalah defformat().

```
>defformat; // default
```

Ada operator pendek yang hanya mencetak satu nilai. Operator "longest" akan mencetak semua digit angka yang valid.

```
>longest pi^2/2
```

Ada juga operator singkat untuk mencetak hasil dalam format pecahan. Sudah digunakan di atas.

>fraction 1+1/2+1/3+1/4

25/12

Karena format internal EMT menyimpan angka dalam bentuk biner, nilai 0.1 tidak dapat direpresentasikan secara tepat. Akibatnya, akan ada sedikit kesalahan yang dapat bertambah dalam perhitungan.

>longest 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+1

-1.110223024625157e-16

Tetapi, dengan "longformat" default, kita tidak akan melihat hal ini. Demi kenyamanan, angka yang sangat kecil akan ditampilkan sebagai 0.

>0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1-1

String atau nama dapat digunakan untuk menyimpan ekspresi matematika, yang dapat dievaluasi oleh EMT. Untuk ini, gunakan tanda kurung setelah ekspresi. Jika string dipakai sebagai ekspresi, biasanya dinamai "fx" atau "fxy", dll. Ekspresi lebih diutamakan daripada fungsi.

Variabel global dapat digunakan dalam evaluasi.

```
>r:=2; fx:="pi*r^2"; longest fx()
```

12.56637061435917

Parameter ditetapkan ke x, y, dan z dalam urutan tersebut. Parameter tambahan dapat ditambahkan dengan menggunakan parameter yang ditetapkan.

```
>fx:="a*sin(x)^2"; fx(5,a=-1)
```

-0.919535764538

Perhatikan bahwa ekspresi akan selalu menggunakan variabel global, meskipun ada variabel dalam fungsi dengan nama yang sama. (Jika tidak, evaluasi ekspresi dalam fungsi dapat memberikan hasil yang sangat membingungkan bagi pengguna yang memanggil fungsi tersebut).

```
>at:=4; function f(expr,x,at) := expr(x); ...
>f("at*x^2",3,5) // computes 4*3^2 not 5*3^2
```

36

Jika kita ingin menggunakan nilai lain untuk "at" selain nilai global, kita perlu menambahkan "at=value".

```
>at:=4; function f(expr,x,a) := expr(x,at=a); ...
>f("at*x^2",3,5)
```

45

Sebagai catatan, kami menyatakan bahwa call collections (dibahas di bagian lain) juga dapat memuat ekspresi. Jadi kita dapat membuat contoh di atas sebagai berikut.

```
>at:=4; function f(expr,x) := expr(x); ...
>f({{"at*x^2",at=5}},3)
```

Ekspresi dalam x sering digunakan seperti halnya fungsi.

Perhatikan bahwa mendefinisikan fungsi dengan nama yang sama seperti ekspresi simbolik global akan menghapus variabel ini untuk menghindari kebingungan antara ekspresi simbolik dan fungsi.

```
>f &= 5*x;
>function f(x) := 6*x;
>f(2)
```

12

Sesuai dengan konvensi, ekspresi simbolik atau numerik harus diberi nama fx, fxy, dll. Skema penamaan ini tidak boleh digunakan untuk fungsi.

$$x^x (\log x + 1)$$

Bentuk khusus dari sebuah ekspresi memungkinkan variabel apa pun sebagai parameter tanpa nama untuk evaluasi ekspresi, bukan hanya "x", "y", dll. Untuk ini, mulailah ekspresi dengan "@(variabel)...".

```
>"@(a,b) a^2+b^2", %(4,5)
```

```
@(a,b) a^2+b^2
```

Hal ini memungkinkan untuk memanipulasi ekspresi dalam variabel lain untuk fungsi EMT yang membutuhkan ekspresi dalam "x".

Cara paling dasar untuk mendefinisikan fungsi sederhana adalah dengan menyimpan rumusnya dalam ekspresi simbolik atau numerik. Jika variabel utamanya adalah x, ekspresi tersebut dapat dievaluasi seperti halnya sebuah fungsi.

Selain itu, variabel global juga dapat terlihat selama evaluasi.

```
>fx &= x^3-a*x; ...
>a=1.2; fx(0.5)
```

-0.475

Semua variabel lain dalam ekspresi dapat ditentukan dalam evaluasi menggunakan parameter yang ditetapkan.

```
>fx(0.5,a=1.1)
```

-0.425

Sebuah ekspresi tidak perlu berbentuk simbolik. Hal ini diperlukan jika ekspresi memuat fungsi yang hanya dikenal di numerical kernel, bukan di Maxima.

EMT melakukan matematika simbolik dengan bantuan Maxima. Untuk detailnya, dapat memulai dari tutorial atau referensi Maxima. Perlu diperhatikan bahwa ada perbedaan sintaks antara Maxima asli dan sintaks default EMT.

Perhitungan simbolik terintegrasi dengan mudah di Euler melalui tanda &.Ekspresi apapun yang diawali dengan & akan dievaluasi dan ditampilkan oleh Maxima.

Selain itu, Maxima memiliki aritmatika "tak terbatas" yang dapat menangani bilangan yang sangat besar.

>\$&44!

2658271574788448768043625811014615890319638528000000000

Dengan cara ini, kita dapat menghitung hasil yang besar secara tepat. Mari kita hitung

$$C(44,10) = \frac{44!}{34! \cdot 10!}$$

>\$& 44!/(34!*10!) // nilai C(44,10)

Tentu saja, Maxima memiliki fungsi yang lebih efisien untuk hal ini (seperti halnya bagian numerik EMT).

>\$binomial(44,10) //menghitung C(44,10) menggunakan fungsi binomial()

2481256778

Untuk mempelajari lebih lanjut tentang fungsi tertentu, klik dua kali pada fungsi tersebut. Sebagai contoh, coba klik dua kali pada "&binomial" di baris perintah sebelumnya. Ini akan membuka dokumentasi Maxima yang disediakan oleh pembuat program tersebut.

Kita akan mengetahui bahwa fungsi-fungsi berikut juga dapat digunakan.

$$C(x,3) = \frac{x!}{(x-3)!3!} = \frac{(x-2)(x-1)x}{6}$$

>\$binomial(x,3) // C(x,3)

$$\frac{(x-2)(x-1)x}{6}$$

Jika kita ingin mengganti x dengan nilai tertentu, gunakan "with".

 $\$ with x=10 // substitusi x=10 ke C(x,3)

120

Dengan begitu, solusi dari suatu persamaan bisa digunakan dalam persamaan lain.

Ekspresi simbolik dicetak oleh Maxima dalam bentuk 2D karena adanya symbolic flag khusus dalam string.

Jika LaTeX terpasang, ekspresi simbolik dapat dicetak dengan LaTeX menggunakan tanda \$ di depan & (atau langsung \$ saja). Namun, jika LaTeX tidak terpasang, perintah ini akan menghasilkan pesan error.

>\$(3+x)/(x^2+1)

$$\frac{x+3}{x^2+1}$$

Ekspresi simbolik diproses oleh Euler. Jika membutuhkan sintaks yang kompleks dalam satu ekspresi, ekspresi tersebut bisa dimasukkan ke dalam "...". Menggunakan lebih dari satu ekspresi sederhana dimungkinkan, tetapi sangat tidak disarankan.

>&"v := 5; v^2"

25

Sebagai tambahan, ekspresi simbolik dapat digunakan dalam program, tetapi harus diapit dengan tanda kutip. Selain itu, akan jauh lebih efektif untuk memanggil Maxima pada saat kompilasi jika memungkinkan.

```
\ expand((1+x)^4), \ factor(diff(%,x)) // diff: turunan, factor: faktor
```

$$4(x+1)^3$$

Sekali lagi, % mengacu pada hasil sebelumnya.

Untuk mempermudah, kita menyimpan solusi ke dalam sebuah variabel simbolik. Variabel simbolik didefinisikan dengan "&=".

>fx &=
$$(x+1)/(x^4+1)$$
; \$&fx

$$\frac{x+1}{x^4+1}$$

Ekspresi simbolik dapat digunakan dalam ekspresi simbolik lainnya.

>\$&factor(diff(fx,x))

$$\frac{-3x^4 - 4x^3 + 1}{\left(x^4 + 1\right)^2}$$

Perintah Maxima juga bisa dimasukkan langsung dengan memulai baris perintah menggunakan Sintaks Maxima telah disesuaikan dengan sintaks EMT melalui "compatibility mode".

```
>&factor(20!)
```

2432902008176640000

```
>::: factor(10!)
```

>:: factor(20!)

18 8 4 2 2 3 5 7 11 13 17 19

Bagi pengguna yang sudah ahli dalam Maxima, sintaks asli Maxima bisa digunakan dengan memulai perintah menggunakan ":::".

>::: av:g\$ av^2;

g

3 x x E

 $x^3 e^x$

Variabel tersebut dapat digunakan dalam ekspresi simbolik lainnya. Perhatikan, bahwa pada perintah berikut ini, sisi kanan dari &= dievaluasi sebelum penugasan ke Fx.

>&(fx with x=5), \$%, &float(%)

125 E

5

 $125 e^{5}$

18551.64488782208

>fx(5)

Untuk mengevaluasi sebuah ekspresi dengan nilai variabel tertentu, dapat menggunakan operator "with". Baris perintah berikut ini juga mendemonstrasikan bahwa Maxima dapat mengevaluasi sebuah ekspresi secara numerik dengan float().

$$\$$
 (fx with x=10)-(fx with x=5), &float(%)

2.20079141499189e+7

$$x(x^2 + 6x + 6)e^x$$

Untuk mendapatkan kode Latex untuk sebuah ekspresi, kita dapat menggunakan perintah tex.

$$x^3\,e^{x}$$

Ekspresi simbolik dapat dievaluasi seperti halnya ekspresi numerik.

fx(0.5)

0.206090158838

Dalam ekspresi simbolik, hal ini tidak dapat dilakukan, karena Maxima tidak mendukungnya. Sebagai gantinya, gunakan sintaks "with" (bentuk yang lebih baik dari perintah at(...) pada Maxima).

>\$&fx with x=1/2

 $\frac{\sqrt{6}}{8}$

Penugasan ini juga bisa bersifat simbolis.

>\$&fx with x=1+t

 $(t+1)^3 e^{t+1}$

$$(z - 9) (z + 9)$$

Soal difaktorkan menggunakan identitas selisih dua kuadrat, dengan rumus faktorisasi selisih dua kuadrat:

$$a^2 - b^2 = (a+b)(a-b)$$

dengan a=z, b=9(karena 9^2=81)

Soal nomor 74[R.4]

$$\frac{(y^(2*n) + 16*y^n + 64)}{}$$

$$(y^{2n} + 16y^n + 64)$$

Ekspresi ini adalah trinomial kuadrat sempurna. Sehingga memenuhi pola:

$$a^2 + 2ab + b^2 = (a+b)^2$$

dengan a=y^n dan b=8.

Soal nomor 122

$$> \& factor (11*x^2 + x^4 - 80)$$

$$(11x^2 + x^4 - 80)$$

Ekspresi difaktorkan dengan substitusi

$$y = x^2$$

menghasilkan dua faktor:

$$(x^2 + 16)$$

(tidak dapat difaktorkan lebih lanjut)

$$(x^2 - 5)$$

(dipertahankan karena akar tidak bulat)

Perintah solve menyelesaikan ekspresi simbolik untuk sebuah variabel di Maxima. Hasilnya adalah sebuah vektor solusi.

>\$&solve(x^2+x=4,x)

$$\left[x = \frac{-\sqrt{17} - 1}{2}, x = \frac{\sqrt{17} - 1}{2}\right]$$

Bandingkan dengan perintah "solve" numerik di Euler, yang membutuhkan nilai awal, dan secara opsional nilai target.

>solve("x^2+x",1,y=4)

1.56155281281

TNilai numerik dari solusi simbolik dapat dihitung dengan mengevaluasi hasil simbolik tersebut. Euler akan membaca penugasan seperti x= dan seterusnya. Jika nilai numerik tidak diperlukan untuk perhitungan lebih lanjut, Maxima juga dapat digunakan untuk menemukan nilai numeriknya.

$$\left[x = -\sqrt{5} - 1, x = \sqrt{5} - 1\right]$$

[-3.23607, 1.23607]

$$[x = -3.23606797749979, x = 1.23606797749979]$$

Untuk mendapatkan solusi simbolik yang spesifik, seseorang dapat menggunakan "with" dan indeks.

$$\$$
 >\$&solve(x^2+x=1,x), x2 &= x with %[2]; \$&x2

$$\frac{\sqrt{5}-1}{2}$$

$$\frac{\sqrt{5}-1}{2}$$

Untuk menyelesaikan sistem persamaan, gunakan vektor persamaan. Hasilnya adalah vektor solusi.

>sol &= solve([
$$x+y=3,x^2+y^2=5$$
],[x,y]); \$/, \$& $x*y$ with sol[1]

2

Ekspresi simbolik dapat memiliki flag yang menentukan perlakuan khusus di Maxima. Beberapa flag dapat digunakan sebagai perintah, sementara yang lain tidak. Flag ditambahkan dengan simbol '|' yang merupakan bentuk lebih ringkas dari ev(...,flags).

Soal nomor 36

$$>$$
&solve (y^2 - 4*y - 45 = 0)

$$[y = 9, y = -5]$$

Persamaan difaktorkan menjadi

$$(y-9)(y+5) = 0,$$

sehingga solusinya adalah

$$y = 9, y = -5.$$

Soal nomor 87

$$>$$
&solve (3*x^3 + 6*x^2 - 27*x - 54 = 0)

$$[x = -3, x = -2, x = 3]$$

Persamaan difaktorkan dengan grouping menjadi

$$3(x+2)(x+3)(x-3) = 0,$$

sehingga solusinya adalah

$$x = -3, -2, 3.$$

Soal nomor 31

>&solve
$$(7*(3*x + 6) = 11 - (x + 2))$$

$$\begin{bmatrix} x = - - \end{bmatrix}$$

Menyelesaikan persamaan

$$(7(3x+6) = 11 - (x+2))$$
$$x = (-3/2)$$

> $& diff((x^3-1)/(x+1),x) //turunan bentuk pecahan$

$$\frac{3x^2}{x+1} - \frac{x^3 - 1}{(x+1)^2}$$

> \$ diff((x^3-1)/(x+1),x) | ratsimp //menyederhanakan pecahan

$$\frac{2\,x^3 + 3\,x^2 + 1}{x^2 + 2\,x + 1}$$

>\$&factor(%)

$$\frac{2x^3 + 3x^2 + 1}{(x+1)^2}$$

Fungsi

Dalam EMT, fungsi adalah program yang ditentukan dengan perintah "function". Fungsi dapat berupa fungsi satu baris atau fungsi multibaris.

Fungsi satu baris dapat berupa numerik atau simbolik. Fungsi satu baris numerik didefinisikan dengan ":=".

```
>function f(x) := x*sqrt(x^2+1)
```

Sebagai gambaran, terdapat berbagai cara untuk mendefinisikan one-line function di Euler. Fungsi yang didefinisikan dapat dievaluasi layaknya fungsi bawaan Euler lainnya.

```
>f(2)
```

4.472135955

Fungsi ini juga dapat digunakan untuk vektor, mengikuti bahasa matriks Euler, karena ekspresi yang digunakan dalam fungsi ini adalah vektor.

```
>f(0:0.1:1)
```

```
[0, 0.100499, 0.203961, 0.313209, 0.430813, 0.559017, 0.699714, 0.854459, 1.0245, 1.21083, 1.41421]
```

Fungsi dapat diplot. Alih-alih ekspresi, kita hanya perlu memberikan nama fungsi.

Berbeda dengan ekspresi simbolik atau numerik, nama fungsi harus disediakan dalam bentuk string.

```
>solve("f",1,y=1)
```

0.786151377757

Secara default, jika ingin menimpa fungsi bawaan di Euler, harus menambahkan kata kunci "overwrite". Namun, menimpa fungsi bawaan berisiko karena dapat menimbulkan masalah pada fungsi lain yang bergantung padanya. Fungsi bawaan dari inti Euler tetap bisa dipanggil menggunakan awalan "....".

```
>function overwrite \sin (x) := -\sin(x^{\circ}) // redine \sin \exp \exp \sin(45)
```

0.707106781187

Sebaiknya kita menghapus definisi ulang fungsi sin agar tidak menimbulkanmasalah pada fungsi lainnya.

```
>forget sin; sin(pi/4)
```

0.707106781187

Fungsi numerik dapat memiliki parameter default.

```
>function f(x,a=1) := a*x^2
```

Menghilangkan parameter ini menggunakan nilai default.

```
>f(4)
```

16

Mengatur ulang nilai akan menimpa nilai default yang sudah ada.

```
>f(4,5)
```

Parameter yang diberi nilai juga akan menimpa nilai sebelumnya. Hal ini digunakan pada banyak fungsi di Euler, seperti plot2d dan plot3d.

```
>f(4,a=1)
```

16

Jika sebuah variabel bukan parameter, maka variabel tersebut harus bersifat global. Fungsi satu baris dapat mengakses variabel global.

```
>function f(x) := a*x^2
>a=6; f(2)
```

24

Parameter yang diberi nilai akan menimpa nilai global. Jika argumen tidak ada dalam daftar parameter bawaan, maka harus dideklarasikan dengan ":="!

```
>f(2,a:=5)
```

Fungsi simbolik didefinisikan dengan "&=". Fungsi-fungsi ini didefinisikan dalam Euler dan Maxima, dan dapat digunakan di kedua bahasa tersebut. Ekspresi pendefinisian dijalankan melalui Maxima sebelum definisi.

>function
$$g(x) &= x^3-x*exp(-x); $&g(x)$$

$$x^3 - x e^{-x}$$

Fungsi simbolis dapat digunakan dalam ekspresi simbolis.

$$\$$
 >\$&diff(g(x),x), \$&% with x=4/3

$$\frac{e^{-\frac{4}{3}}}{3} + \frac{16}{3}$$

$$\frac{e^{-\frac{4}{3}}}{3} + \frac{16}{3}$$

Fungsi-fungsi tersebut juga dapat digunakan dalam ekspresi numerik, asalkan semua elemen di dalam fungsi dapat diinterpretasikan oleh EMT.

Fungsi-fungsi tersebut juga dapat digunakan untuk mendefinisikan fungsi atau ekspresi simbolik lainnya.

>function G(x) &= factor(integrate(g(x),x)); \$&G(c) // integrate: mengintegralkan

$$\frac{e^{-c} \left(c^4 e^c + 4 c + 4\right)}{4}$$

>solve(&g(x),0.5)

0.703467422498

Hal ini juga dapat digunakan, karena Euler menggunakan ekspresi simbolik dalam fungsi g, jika tidak menemukan variabel simbolik g, dan jika ada fungsi simbolik g.

>solve(&g,0.5)

0.703467422498

>function $P(x,n) &= (2*x-1)^n; &P(x,n)$

>function
$$Q(x,n) &= (x+2)^n; &Q(x,n)$$

$$(x+2)^n$$

$$16x^4 - 32x^3 + 24x^2 - 8x + 1$$

$$\$$
 \\$\(\(\)\(\)\ \Q(\)\(\)\, \\$\(\)\expand(\%)

$$16x^4 - 31x^3 + 30x^2 + 4x + 9$$

$$16x^4 - 33x^3 + 18x^2 - 20x - 7$$

$$\$$
 >\$&P(x,4)*Q(x,3), \$&expand(%), \$&factor(%)

$$(x+2)^3 (2x-1)^4$$

$$\frac{\left(2\,x-1\right)^4}{x+2}$$

$$\frac{16x^4}{x+2} - \frac{32x^3}{x+2} + \frac{24x^2}{x+2} - \frac{8x}{x+2} + \frac{1}{x+4}$$

$$\frac{(2x-1)^4}{x+2}$$

>function $f(x) &= x^3-x$; &f(x)

$$x^3 - x$$

Dengan &=, fungsi ini bersifat simbolis, dan dapat digunakan dalam ekspresi simbolis lainnya.

>\$&integrate(f(x),x)

$$\frac{x^4}{4} - \frac{x}{2}$$

Dengan := fungsi tersebut berupa angka. Contoh yang baik adalah integral pasti seperti

$$f(x) = \int_{1}^{x} t^{t} dt,$$

yang tidak dapat dievaluasi secara simbolis.

Jika kita mendefinisikan ulang fungsi dengan kata kunci "map", fungsi ini dapat digunakan untuk vektor x. Secara internal, fungsi ini dipanggil untuk semua nilai x satu kali, dan hasilnya disimpan dalam sebuah vektor.

```
>function map f(x) := integrate("x^x",1,x)
>f(0:0.5:2)
```

```
[-0.783431, -0.410816, 0, 0.676863, 2.05045]
```

Fungsi dapat memiliki nilai default untuk parameter.

```
>function mylog (x,base=10) := ln(x)/ln(base);
```

Sekarang, fungsi ini dapat dipanggil dengan atau tanpa parameter "base".

```
>mylog(100), mylog(2^6.7,2)
```

2 6.7 Selain itu, dimungkinkan untuk menggunakan parameter yang ditetapkan.

>mylog(E^2,base=E)

2

Sering kali, kita ingin menggunakan fungsi untuk vektor di satu tempat, dan untuk masing-masing elemen di tempat lain. Hal ini dimungkinkan dengan parameter vektor.

>function $f([a,b]) \&= a^2+b^2-a*b+b; \&f(a,b), \&f(x,y)$

$$y^2 - xy + y + x^2$$

Fungsi simbolik seperti itu dapat digunakan untuk variabel simbolik.

Tetapi fungsi ini juga dapat digunakan untuk vektor numerik.

>v=[3,4]; f(v)

Ada juga fungsi yang murni simbolis, yang tidak dapat digunakan secara numerik.

```
>function lapl(expr,x,y) &&= diff(expr,x,2)+diff(expr,y,2)//turunan parsial kedua
```

```
>$&realpart((x+I*y)^4), $&lapl(%,x,y)
```

0

Tetapi tentu saja, semua itu bisa digunakan dalam ekspresi simbolis atau dalam definisi fungsi simbolis.

>function
$$f(x,y) \&= factor(lapl((x+y^2)^5,x,y)); \&f(x,y)$$

10
$$(y^2+x)^3 (9y^2+x+2)$$

Untuk meringkas

- &= mendefinisikan fungsi simbolik,
- $\boldsymbol{\cdot} := \operatorname{mendefinisikan}$ fungsi numerik,
- &&= mendefinisikan fungsi simbolik murni.

Memecahkan Ekspresi

Ekspresi dapat diselesaikan secara numerik dan simbolik.

Untuk menyelesaikan ekspresi sederhana dari satu variabel, kita dapat menggunakan fungsi solve(). Fungsi ini membutuhkan nilai awal untuk memulai pencarian. Secara internal, solve() menggunakan metode secant.

>solve("x^2-2",1)

1.41421356237

Hal ini juga bisa digunakan untuk ekspresi simbolis. Perhatikan fungsi berikut ini.

>\$&solve(x^2=2,x)

$$\left[x = -\sqrt{2}, x = \sqrt{2}\right]$$

>\$&solve(x^2-2,x)

$$\left[x = -\sqrt{2}, x = \sqrt{2}\right]$$

$$\$$
 >\$&solve(a*x^2+b*x+c=0,x)

$$x = \frac{-\sqrt{b^2 - 4ac - b}}{2a}, x = \frac{\sqrt{b^2 - 4ac - b}}{2a}$$

>\$&solve([a*x+b*y=c,d*x+e*y=f],[x,y])

$$\left[\left[x=-\frac{c\,e}{b\,\left(d-5\right)-a\,e},y=\frac{c\,\left(d-5\right)}{b\,\left(d-5\right)-a\,e}\right]\right]$$

>\$&solve (x^4 - 3*x^2 + 2 = 0,x)

$$\left[x = -\sqrt{2}, x = \sqrt{2}, x = -1, x = 1 \right]$$

Persamaan diselesaikan dengan substitusi $y=x^2$, menghasilkan persamaan kuadrat $y^2-3y+2=0$. Solusi untuk y adalah y=1 dan y=2, yang kemudian disubstitusi kembali ke x^2 untuk mendapatkan empat solusi real.

>px $\&= 4*x^8+x^7-x^4-x$; &px

Sekarang kita mencari titik, di mana polinomialnya adalah 2. Dalam solve(), nilai target default y=0 dapat diubah dengan variabel yang ditetapkan.

Kita menggunakan y=2 dan mengeceknya dengan mengevaluasi polinomial pada hasil sebelumnya.

0.966715594851

Memecahkan sebuah ekspresi simbolik dalam bentuk simbolik mengembalikan sebuah daftar solusi. Menggunakan pemecah simbolik solve() yang disediakan oleh Maxima.

>sol &= solve(x^2-x-1,x); \$&sol

$$x = \frac{1 - \sqrt{5}}{2}, x = \frac{\sqrt{5} + 1}{2}$$

Cara termudah untuk mendapatkan nilai numerik adalah dengan mengevaluasi solusi secara numerik seperti sebuah ekspresi.

>longest sol()

Untuk menggunakan solusi secara simbolis dalam ekspresi lain, cara termudah adalah "with".

>\$&x^2 with sol[1], \$&expand(x^2-x-1 with sol[2])

0

Penyelesaian sistem persamaan secara simbolik dapat dilakukan menggunakan vektor persamaan dan symbolic solver solve(). Hasilnya berupa daftar berisi beberapa daftar persamaan.

 $\strut^{x+y=2}, x^3+2*y+x=4], [x,y])$

$$[[x = -1, y = 3], [x = 1, y = 1], [x = 0, y = 2]]$$

Fungsi f() dapat mengakses variabel global, tetapi sering kali kita ingin menggunakan parameter lokal. Misalnya, persamaan

$$a^x - x^a = 0.1$$

dengan a=3.

```
>function f(x,a) := x^a-a^x;
```

Salah satu cara untuk mengoper parameter tambahan kef() adalah dengan menggunakan sebuah daftar yang berisi nama fungsi dan parameternya (cara lainnya adalah dengan menggunakan parameter titik koma).

```
>solve({{"f",3}},2,y=0.1)
```

2.54116291558

Hal ini juga bisa diterapkan pada ekspresi, tetapi harus menggunakan elemen daftar yang diberi nama. (Penjelasan lebih lanjut ada di tutorial tentang sintaks EMT).

```
>solve({{"x^a-a^x",a=3}},2,y=0.1)
```

2.54116291558

Menyelesaikan Pertidaksamaan

Untuk menyelesaikan pertidaksamaan, EMT tidak akan dapat melakukannya, melainkan dengan bantuan Maxima, artinya secara eksak (simbolik). Perintah Maxima yang digunakan adalah fourier_elim(), yang harus dipanggil dengan perintah "load(fourier_elim)" terlebih dahulu.

>&load(fourier_elim)

C:/Program Files/Euler x64/maxima/share/maxima/5.35.1/share/f\ ourier_elim/fourier_elim.lisp

$$\$$
 >\$&fourier_elim([x^2 - 1>0],[x]) // x^2-1 > 0

$$[1 < x] \lor [x < -1]$$

$$\$$
 \$\forall fourier_elim([x^2 - 1<0],[x]) // x^2-1 < 0

$$[-1 < x, x < 1]$$

$$[1 < x, x^2 + x + 1 > 0] \lor [x < 1, -x^2 - x - 1 > 0]$$

>\$&fourier_elim([x^3 - 1 > 0],[x])

$$\$$
 \$\delta fourier_elim([cos(x) < 1/2],[x]) // ??? gagal

$$[1 - 2\cos x > 0]$$

>
$$\$$
fourier_elim([y-x < 5, x - y < 7, 10 < y],[x,y]) // sistem pertidaksamaan

$$[y-5 < x, x < y+7, 10 < y]$$

$$\five $$ fourier_elim([y-x < 5, x - y < 7, 10 < y],[y,x]) $$$

$$[\max{(10, x - 7)} < y, y < x + 5, 5 < x]$$

$$\$$
 *\formalfont for the following forms of the following for the following forms of the follow

$$\[y+8 < x, x < 5 - y, y < -\frac{3}{2}\]$$

>
$$&fourier_elim(((x + y < 5) and x < 1) or (x - y > 8),[x,y])$$

$$[y + 8 < x] \lor [x < min(1, 5 - y)]$$

$$>\&fourier_elim([max(x,y) > 6, x # 8, abs(y-1) > 12],[x,y])$$

$$[6 < x, x < 8, y < -11] \text{ or } [8 < x, y < -11] \\ \text{or } [x < 8, 13 < y] \text{ or } [x = y, 13 < y] \text{ or } [8 < x, x < y, 13 < y] \\ \text{or } [y < x, 13 < y]$$

$\$ >\$&fourier_elim([(x+6)/(x-9) <= 6],[x])

$$[x = 12] \lor [12 < x] \lor [x < 9]$$

Soal nomor 61 [4.1]

$$\$$
 \\$\delta\text{fourier_elim([(x-2)/(x+5) >=(x(x-3))],[x])}

$$[x < -5, xx(x-3) + 5x(x-3) - x + 2 = 0] \lor [-5 < x, xx(x-3) + 5x(x-3) - x + 2 = 0] \lor [x < -5, xx(x-3) + 5x(x-3) + 5$$

$$\$$
 >\$&fourier_elim([2*y - 3 >= 1 - y + 5],[y])

 $[y = 3] \lor [3 < y]$

Bahasa Matriks

Dokumentasi inti EMT berisi diskusi terperinci tentang bahasa matriks Euler.

Vektor dan matriks dimasukkan dengan tanda kurung siku, elemen dipisahkan dengan koma, baris dipisahkan dengan titik koma.

1 3

Hasil kali matriks dilambangkan dengan sebuah titik.

3 4

>b' // transpose b

>inv(A) //inverse A

-2 1 1.5 -0.5

>A.b //perkalian matriks

11 25

>A.inv(A)

1 0

Poin utama dari bahasa matriks adalah bahwa semua fungsi dan operator bekerja elemen per elemen.

>A.A

7 10 15 22

>A^2 //perpangkatan elemen2 A

>A.A.A

37 54 81 118

>power(A,3) //perpangkatan matriks

37 54 81 118

>A/A //pembagian elemen-elemen matriks yang seletak

1

>A/b //pembagian elemen2 A oleh elemen2 b kolom demi kolom (karena b vektor kolom)

0.333333 0.666667 0.75 1

>A\b // hasilkali invers A dan b, A^(-1)b

-2 2.5

>inv(A).b

-2 2.5

1

>A\A //A^(-1)A

>inv(A).A

1 0

>A*A //perkalian elemen-elemen matriks seletak

1 4 9 16

Ini bukan hasil kali matriks, tetapi perkalian elemen per elemen. Hal yang sama berlaku untuk vektor.

>b^2 // perpangkatan elemen-elemen matriks/vektor

9 16 Jika salah satu operan adalah vektor atau skalar, maka operan tersebut akan diperluas dengan cara alami.

>2*A

2

Misalnya, jika operan adalah vektor kolom, elemen-elemennya diterapkan ke semua baris A.

>[1,2]*A

1 4 3 8

Jika ini adalah vektor baris, vektor ini diterapkan ke semua kolom A.

>A*[2,3]

2 6 6 12 Kita dapat membayangkan perkalian ini seolah-olah vektor baris v telah diduplikasi untuk membentuk matriks dengan ukuran yang sama dengan A.

>dup([1,2],2) // dup: menduplikasi/menggandakan vektor [1,2] sebanyak 2 kali (baris)

1 2 1 2

>A*dup([1,2],2)

1 3

Hal ini juga berlaku untuk dua vektor di mana satu vektor adalah vektor baris dan yang lainnya adalah vektor kolom. Menghitung i*j untuk i, j dari 1 sampai 5. Caranya adalah dengan mengalikan 1:5 dengan transposenya. Bahasa matriks Euler secara otomatis menghasilkan sebuah tabel nilai.

>(1:5)*(1:5)' // hasilkali elemen-elemen vektor baris dan vektor kolom

1	2	3	4	5
2	4	6	8	10
3	6	9	12	15
4	8	12	16	20
5	10	15	20	25

Sekali lagi, ingatlah bahwa ini bukan produk matriks!

```
>(1:5).(1:5)' // hasilkali vektor baris dan vektor kolom
```

55

```
>sum((1:5)*(1:5)) // sama hasilnya
```

55

Bahkan operator seperti < atau == bekerja dengan cara yang sama.

```
>(1:10)<6 // menguji elemen-elemen yang kurang dari 6
```

```
[1, 1, 1, 1, 0, 0, 0, 0, 0]
```

Sebagai contoh, kita dapat menghitung jumlah elemen yang memenuhi kondisi tertentu dengan fungsi $\operatorname{sum}()$.

```
>sum((1:10)<6) // banyak elemen yang kurang dari 6
```

Euler memiliki operator perbandingan, seperti "==", yang memeriksa kesetaraan.

Kita mendapatkan vektor 0 dan 1, di mana 1 berarti benar.

```
t=(1:10)^2; t=25 //menguji elemen2 t yang sama dengan 25 (hanya ada 1)
```

```
[0, 0, 0, 0, 1, 0, 0, 0, 0]
```

Dari vektor seperti itu, "nonzeros" memilih elemen bukan nol.

Dalam hal ini, kita mendapatkan indeks semua elemen yang lebih besar dari 50.

```
>nonzeros(t>50) //indeks elemen2 t yang lebih besar daripada 50
```

[8, 9, 10]

Tentu saja, kita dapat menggunakan vektor indeks ini untuk mendapatkan nilai yang sesuai dalam t.

```
>t[nonzeros(t>50)] //elemen2 t yang lebih besar daripada 50
```

[64, 81, 100]

Sebagai contoh, mari kita cari semua kuadrat dari angka 1 sampai 1000, yaitu 5 modulo 11 dan 3 modulo 13.

```
>t=1:1000; nonzeros(mod(t^2,11)==5 \&\& mod(t^2,13)==3)
```

```
[4, 48, 95, 139, 147, 191, 238, 282, 290, 334, 381, 425, 433, 477, 524, 568, 576, 620, 667, 711, 719, 763, 810, 854, 862, 906, 953, 997]
```

EMT tidak sepenuhnya efektif untuk komputasi bilangan bulat. EMT menggunakan floating point presisi ganda secara internal. Akan tetapi, hal ini sering kali sangat berguna.

Kita dapat memeriksa bilangan prima. Mari kita cari tahu, berapa banyak kuadrat ditambah 1 yang merupakan bilangan prima.

```
>t=1:1000; length(nonzeros(isprime(t^2+1)))
```

112

Fungsi nonzeros() hanya bekerja untuk vektor. Untuk matriks, ada mnonzeros().

```
>seed(2); A=random(3,4)
```

```
      0.765761
      0.401188
      0.406347
      0.267829

      0.13673
      0.390567
      0.495975
      0.952814

      0.548138
      0.006085
      0.444255
      0.539246
```

Ini mengembalikan indeks elemen, yang bukan nol.

>k=mnonzeros(A<0.4) //indeks elemen2 A yang kurang dari 0,4

1	4
2	1
2	2
3	2

Indeks ini dapat digunakan untuk menetapkan elemen ke suatu nilai.

>mset(A,k,0) //mengganti elemen2 suatu matriks pada indeks tertentu

Fungsi mset() juga dapat mengatur elemen-elemen pada indeks ke entri-entri matriks lain.

>mset(A,k,-random(size(A)))

0.765761	0.401188	0.406347	-0.126917
-0.122404	-0.691673	0.495975	0.952814
0.548138	-0.483902	0.444255	0.539246

Dan dimungkinkan untuk mendapatkan elemen-elemen dalam vektor.

```
>mget(A,k)
```

```
[0.267829, 0.13673, 0.390567, 0.006085]
```

Fungsi lain yang berguna adalah extrema, yang mengembalikan nilai minimal dan maksimal di setiap baris matriks dan posisinya.

>ex=extrema(A)

0.267829	4	0.765761	1
0.13673	1	0.952814	4
0.006085	2	0.548138	1

Kita bisa menggunakan ini untuk mengekstrak nilai maksimal dalam setiap baris.

```
>ex[,3],
```

```
[0.765761, 0.952814, 0.548138]
```

Ini, tentu saja, sama dengan fungsi max().

```
>max(A),
```

```
[0.765761, 0.952814, 0.548138]
```

Tetapi dengan mget(), kita dapat mengekstrak indeks dan menggunakan informasi ini untuk mengekstrak elemen-elemen pada posisi yang sama dari matriks yang lain.

```
>j=(1:rows(A))', |ex[,4], mget(-A,j)
```

```
1 1 2 4 3 1 [-0.765761, -0.952814, -0.548138]
```

Fungsi Matriks Lainnya (Membangun Matriks)

Untuk membangun sebuah matriks, kita dapat menumpuk satu matriks di atas matriks lainnya. Jika keduanya tidak memiliki jumlah kolom yang sama, kolom yang lebih pendek akan diisi dengan 0.

1 2 3 1 2 3

Demikian juga, kita dapat melampirkan matriks ke matriks lain secara berdampingan, jika keduanya memiliki jumlah baris yang sama.

>A=random(3,4); A|v'

1	0.564454	0.595713	0.0534171	0.032444
2	0.83514	0.396988	0.175552	0.83916
3	0.770895	0.629832	0.658585	0.0257573

Jika keduanya tidak memiliki jumlah baris yang sama, matriks yang lebih pendek diisi dengan 0.

Ada pengecualian untuk aturan ini. Bilangan real yang dilampirkan pada sebuah matriks akan digunakan sebagai kolom yang diisi dengan bilangan real tersebut.

>A | 1

0.032444	0.0534171	0.595713	0.564454	1
0.83916	0.175552	0.396988	0.83514	1
0.0257573	0.658585	0.629832	0.770895	1

Dimungkinkan untuk membuat matriks vektor baris dan kolom.

>[v;v]

1	2	3
1	2	3

1 2 3

>[v',v']

Tujuan utama dari hal ini adalah untuk menginterpretasikan vektor ekspresi untuk vektor kolom.

```
>"[x,x^2]"(v')
```

1 2 3

Untuk mendapatkan ukuran A, kita dapat menggunakan fungsi berikut ini.

>C=zeros(2,4); rows(C), cols(C), size(C), length(C)

2 4 [2, 4]

Untuk vektor, ada length().

>length(2:10)

Ada banyak fungsi lain yang menghasilkan matriks.

>ones(2,2)

1

Ini juga dapat digunakan dengan satu parameter. Untuk mendapatkan vektor dengan angka selain 1, gunakan yang berikut ini.

>ones(5)*6

[6, 6, 6, 6, 6]

Matriks angka acak juga dapat dibuat dengan acak (distribusi seragam) atau normal (distribusi Gauß).

>random(2,2)

0.66566 0.831835 0.977 0.544258 Berikut ini adalah fungsi lain yang berguna, yang merestrukturisasi elemen-elemen matriks menjadi matriks lain.

```
>redim(1:9,3,3) // menyusun elemen2 1, 2, 3, ..., 9 ke bentuk matriks 3x3
```

1	2	3
4	5	6
7	8	9

Dengan fungsi berikut, kita dapat menggunakan fungsi ini dan fungsi dup untuk menulis fungsi rep(), yang mengulang sebuah vektor sebanyak n kali.

```
>function rep(v,n) := redim(dup(v,n),1,n*cols(v))
```

Mari kita uji.

```
>rep(1:3,5)
```

```
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
```

Fungsi multdup() menduplikasi elemen-elemen sebuah vektor.

```
>multdup(1:3,5), multdup(1:3,[2,3,2])
```

```
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]
[1, 1, 2, 2, 2, 3, 3]
```

Fungsi flipx() dan flipy() membalik urutan baris atau kolom dari sebuah matriks. Misalnya, fungsi flipx() membalik secara horizontal.

```
>flipx(1:5) //membalik elemen2 vektor baris
```

```
[5, 4, 3, 2, 1]
```

Untuk rotasi, Euler memiliki rotleft() dan rotright().

```
>rotleft(1:5) // memutar elemen2 vektor baris
```

```
[2, 3, 4, 5, 1]
```

Fungsi khusus adalah drop(v,i), yang menghapus elemen dengan indeks di i dari vektor v.

```
>drop(10:20,3)
```

```
[10, 11, 13, 14, 15, 16, 17, 18, 19, 20]
```

Perhatikan bahwa vektor i dalam drop(v,i) merujuk pada indeks elemen dalam v, bukan nilai elemen. Jika Anda ingin menghapus elemen, Anda harus menemukan elemen-elemen tersebut terlebih dahulu. Fungsi indexof(v,x) dapat digunakan untuk menemukan elemen x dalam vektor terurut v.

```
>v=primes(50), i=indexof(v,10:20), drop(v,i)
```

```
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
[0, 5, 0, 6, 0, 0, 0, 7, 0, 8, 0]
[2, 3, 5, 7, 23, 29, 31, 37, 41, 43, 47]
```

Seperti yang kita lihat, tidak ada salahnya menyertakan indeks di luar jangkauan (seperti 0), indeks ganda, atau indeks yang tidak diurutkan.

```
>drop(1:10,shuffle([0,0,5,5,7,12,12]))
```

```
[1, 2, 3, 4, 6, 8, 9, 10]
```

Ada beberapa fungsi khusus untuk mengatur diagonal atau menghasilkan matriks diagonal. Kita mulai dengan matriks identitas.

>A=id(5) // matriks identitas 5x5

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Kemudian, kami menetapkan diagonal bawah (-1) ke 1:4.

>setdiag(A,-1,1:4) //mengganti diagonal di bawah diagonal utama

1	0	0	0	0
1	1	0	0	0
0	2	1	0	0
0	0	3	1	0
0	0	0	4	1

Perhatikan bahwa kita tidak mengubah matriks A. Kita mendapatkan sebuah matriks baru sebagai hasil dari setdiag().

Berikut adalah sebuah fungsi yang mengembalikan sebuah matriks tri-diagonal.

```
>function tridiag (n,a,b,c) := setdiag(setdiag(b*id(n),1,c),-1,a); ... >tridiag(5,1,2,3)
```

2	3	0	0	0
1	2	3	0	0
0	1	2	3	0 0 3 2
0	0	1	2	3
0	0	0	1	2

Diagonal sebuah matriks juga dapat diekstrak dari matriks. Untuk mendemonstrasikan hal ini, kami merestrukturisasi vektor 1:9 menjadi matriks 3x3.

>A=redim(1:9,3,3)

1	2	3
4	5	6
7	8	9

Sekarang kita bisa mengekstrak diagonal.

[1, 5, 9]

Contoh: Kita dapat membagi matriks dengan diagonalnya. Bahasa matriks memperhatikan bahwa vektor kolom d diterapkan ke matriks baris demi baris.

>fraction A/d'

1	2	3
4/5	1	6/5
7/9	8/9	1

Hampir semua fungsi dalam Euler juga dapat digunakan untuk input matriks dan vektor, jika memungkinkan.

Sebagai contoh, fungsi sqrt() menghitung akar kuadrat dari semua elemen vektor atau matriks.

```
>sqrt(1:3)
```

```
[1, 1.41421, 1.73205]
```

Jadi, kita dapat dengan mudah membuat tabel nilai. Ini adalah salah satu cara untuk memplot sebuah fungsi (alternatif lainnya menggunakan ekspresi).

>x=1:0.01:5; $y=log(x)/x^2$; // terlalu panjang untuk ditampikan

Dengan ini dan operator titik dua a:delta:b, vektor nilai fungsi dapat dihasilkan dengan mudah.

Pada contoh berikut, kita membuat vektor nilai t[i] dengan jarak 0.1 dari -1 hingga 1. Kemudian kita membuat vektor nilai dari fungsi

$$s = t^3 - t$$

```
>t=-1:0.1:1; s=t^3-t
```

```
[0, 0.171, 0.288, 0.357, 0.384, 0.375, 0.336, 0.273, 0.192, 0.099, 0, -0.099, -0.192, -0.273, -0.336, -0.375, -0.384, -0.357, -0.288, -0.171, 0]
```

EMT memperluas operator untuk skalar, vektor, dan matriks dengan cara yang jelas.

Misalnya, vektor kolom dikalikan vektor baris diperluas menjadi matriks, jika operator diterapkan. Berikut ini, v' adalah vektor yang ditransposisikan (vektor kolom).

>shortest (1:5)*(1:5)'

1	2	3	4	5
2	4	6	8	10
3	6	9	12	15
4	8	12	16	20
5	10	15	20	25

Perhatikan, bahwa ini sangat berbeda dengan hasil kali matriks. Hasil kali matriks dilambangkan dengan sebuah titik "." dalam EMT.

55

Secara default, vektor baris dicetak dalam format ringkas.

Untuk matriks, operator khusus . menyatakan perkalian matriks, dan A' menyatakan transposisi. Matriks 1x1 dapat digunakan seperti halnya bilangan real.

5

Untuk mentransposisikan matriks, kita menggunakan apostrof.

>v=1:4; v'

Jadi kita dapat menghitung matriks A dikali vektor b.

>A=[1,2,3,4;5,6,7,8]; A.v'

30 70

Perhatikan bahwa v masih merupakan vektor baris. Jadi v'.v berbeda dengan v.v'.

>v'.v

 1
 2
 3
 4

 2
 4
 6
 8

 3
 6
 9
 12

 4
 8
 12
 16

v.v' menghitung norma v kuadrat untuk vektor baris v. Hasilnya adalah vektor 1x1, yang berfungsi seperti bilangan real.

>v.v'

30

Ada juga norma fungsi (bersama dengan banyak fungsi Aljabar Linier lainnya).

>norm(v)^2

30

Operator dan fungsi mematuhi bahasa matriks Euler.

Berikut ini adalah ringkasan aturannya.

- Sebuah fungsi yang diterapkan pada vektor atau matriks diterapkan pada setiap elemen.
- Operator yang beroperasi pada dua matriks dengan ukuran yang sama diterapkan secara berpasangan pada elemen-elemen matriks.
- Jika dua matriks memiliki dimensi yang berbeda, keduanya diperluas dengan cara yang masuk akal, sehingga memiliki ukuran yang sama.

Misalnya, nilai skalar dikalikan vektor mengalikan nilai tersebut dengan setiap elemen vektor. Atau matriks dikali vektor (dengan *, bukan .) memperluas vektor ke ukuran matriks dengan menduplikasinya.

Berikut ini adalah kasus sederhana dengan operator ^.

```
>[1,2,3]^2
```

[1, 4, 9]

Ini adalah kasus yang lebih rumit. Vektor baris dikalikan vektor kolom memperluas keduanya dengan menduplikasi.

>v:=[1,2,3]; v*v'

1 2 3 2 4 6 3 6 9

Perhatikan bahwa hasil kali skalar menggunakan hasil kali matriks, bukan tanda *!

>v.v'

14

Di Euler Math Toolbox (EMT) ada banyak fungsi bawaan untuk bekerja dengan matriks.

sum, prod menjumlahkan atau mengalikan elemen tiap baris (atau

```
{\it keseluruhan\ matriks})
```

cumsum,cumprod menjumlahkan/mengalikan secara kumulatif di tiap

baris

menghitung nilai ekstrem dari setiap baris extrema menghasilkan vektor dengan informasi ekstrem diag(A,i) mengambil diagonal ke-i dari matriks A setdiag(A,i,v) menetapkan diagonal ke-i dengan nilai v id(n) membuat matriks identitas det(A) menghitung determinan charpoly(A) menghasilkan polinomial karakteristik eigenvalues(A) menghitung nilai eigen

```
>v*v, sum(v*v), cumsum(v*v)
```

```
[1, 4, 9]
14
[1, 5, 14]
```

Operator : digunakan untuk membuat vektor baris dengan nilai yang terpisah secara sama jarak (equally spaced).

Untuk menggabungkan matriks dan vektor, terdapat operator "|" dan "_".

Elemen-elemen dari sebuah matriks disebut dengan "A[i,j]".

6

Untuk vektor baris atau kolom, v[i] adalah elemen ke-i dari vektor tersebut. Untuk matriks, ini mengembalikan baris ke-i dari matriks.

```
>v:=[2,4,6,8]; v[3], A[3]
```

```
6
[7, 8, 9]
```

Indeks juga dapat berupa vektor baris dari indeks. : menunjukkan semua indeks.

2 5 8

 $\mbox{Bentuk singkat untuk}$: adalah menghilangkan indeks sepenuhnya.

```
>A[,2:3]
```

Untuk tujuan vektorisasi, elemen-elemen matriks dapat diakses seolah-olah mereka adalah vektor.

```
>A{4}
```

4

Sebuah matriks juga dapat diratakan, dengan menggunakan fungsi redim(). Hal ini diimplementasikan dalam fungsi flatten().

```
>redim(A,1,prod(size(A))), flatten(A)
```

```
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```

Untuk menggunakan matriks untuk tabel, mari kita atur ulang ke format default, dan menghitung tabel nilai sinus dan kosinus. Perhatikan bahwa sudut dalam radian secara default.

```
>defformat; w=0°:45°:360°; w=w'; deg(w)
```

Sekarang kita menambahkan kolom ke matriks.

>M = deg(w)|w|cos(w)|sin(w)

0	0	1	0
45	0.785398	0.707107	0.707107
90	1.5708	0	1
135	2.35619	-0.707107	0.707107
180	3.14159	-1	0
225	3.92699	-0.707107	-0.707107
270	4.71239	0	-1
315	5.49779	0.707107	-0.707107
360	6.28319	1	0

Dengan menggunakan bahasa matriks, kita dapat menghasilkan beberapa tabel dari beberapa fungsi sekaligus.

Dalam contoh berikut, kita menghitung t[j]i untuk i dari 1 hingga n. Kita mendapatkan sebuah matriks, di mana setiap baris merupakan tabel dari t^i untuk satu nilai i. Artinya, matriks tersebut memiliki elemen-elemen

$$a_{i,j} = t_j^i, \quad 1 \le j \le 101, \quad 1 \le i \le n$$

Fungsi yang tidak berfungsi untuk masukan vektor harus "divektorisasi". Hal ini dapat dicapai dengan menggunakan kata kunci "map" dalam definisi fungsi. Kemudian fungsi tersebut akan dievaluasi untuk setiap elemen dari parameter vektor.

Fungsi integrasi numerik 'integrate()' hanya berfungsi untuk batas interval skalar. Oleh karena itu, kita perlu memvektorisasinya.

```
>function map f(x) := integrate("x^x",1,x)
```

Kata kunci "map" membuat vektor fungsi. Fungsi ini sekarang akan bekerja untuk vektor angka.

```
>f([1:5])
```

[0, 2.05045, 13.7251, 113.336, 1241.03]

Sub-Matriks dan Elemen Matriks

Untuk mengakses elemen matriks, gunakan notasi kurung.

$$>A=[1,2,3;4,5,6;7,8,9], A[2,2]$$

1 2 4 5 7 8

Kita dapat mengakses baris lengkap dari sebuah matriks.

>A[2]

5

[4, 5, 6]

Untuk vektor baris atau kolom, ini mengembalikan elemen vektor.

>v=1:3; v[2]

Untuk memastikan, kita mendapatkan baris pertama untuk matriks 1xn dan mxn, tentukan semua kolom menggunakan indeks kedua yang kosong.

>A[2,]

[4, 5, 6]

Jika indeks adalah vektor indeks, Euler akan mengembalikan baris-baris yang sesuai dari matriks. Di sini kita menginginkan baris pertama dan kedua dari A.

>A[[1,2]]

1 2 3 4 5

Kita bahkan dapat menyusun ulang A menggunakan vektor indeks. Tepatnya, kita tidak mengubah A di sini, tetapi menghitung versi susunan ulang dari A.

>A[[3,2,1]]

7	8	9
4	5	6
1	2	3

Trik indeks juga bekerja dengan kolom.

2

Contoh ini memilih semua baris A dan kolom kedua dan ketiga.

>A[1:3,2:3]

3 6 9 5 8

Untuk singkatan ":" menunjukkan semua indeks baris atau kolom.

>A[:,3]

3 6

Sebagai alternatif, biarkan indeks pertama kosong.

>A[,2:3]

2 5

6

9

Kita juga bisa mendapatkan baris terakhir A.

Sekarang mari kita ubah elemen-elemen dari A dengan memberikan sebuah submatriks dari A ke suatu nilai. Hal ini sebenarnya mengubah matriks A yang tersimpan.

4	2	3
4	5	6
7	8	9

Kita juga dapat menetapkan nilai pada deretan A.

-1	-1	-1
4	5	-1 6
7	8	9

Kami bahkan dapat menetapkan ke sub-matriks jika memiliki ukuran yang tepat.

5	6	-1
7	8	6
7	8	9

Selain itu, beberapa jalan pintas diperbolehkan.

0	0	-1
0	0	6
7	8	9

Peringatan: Indeks di luar batas akan mengembalikan matriks kosong, atau pesan kesalahan, tergantung pada pengaturan sistem. Standarnya adalah pesan kesalahan. Namun, ingatlah bahwa indeks negatif dapat digunakan untuk mengakses elemen-elemen matriks yang dihitung dari akhir.

```
>A[4]
```

```
Row index 4 out of bounds!
Error in:
A[4] ...
```

Fungsi mengurutkan() mengurutkan vektor baris.

```
>sort([5,6,4,8,1,9])
```

```
[1, 4, 5, 6, 8, 9]
```

Sering kali diperlukan untuk mengetahui indeks vektor yang telah diurutkan dalam vektor aslinya. Hal ini dapat digunakan untuk menyusun ulang vektor lain dengan cara yang sama.

Mari kita mengacak sebuah vektor.

```
>v=shuffle(1:10)
```

```
[4, 5, 10, 6, 8, 9, 1, 7, 2, 3]
```

Indeks berisi urutan v yang tepat.

```
>{vs,ind}=sort(v); v[ind]
```

```
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

Hal ini juga berlaku untuk vektor string.

```
>s=["a","d","e","a","aa","e"]
```

a d

a

aa

e

a

a

aa

d

е

е

Seperti yang terlihat, posisi entri ganda agak acak.

>ind

[4, 1, 5, 2, 6, 3]

Fungsi unique mengembalikan daftar terurut dari elemen unik sebuah vektor.

```
>intrandom(1,10,10), unique(%)
```

```
[4, 4, 9, 2, 6, 5, 10, 6, 5, 1]
[1, 2, 4, 5, 6, 9, 10]
```

Hal ini juga berlaku untuk vektor string.

>unique(s)

a

aa

С

е

EMT memiliki banyak fungsi untuk menyelesaikan sistem linier, sistem jarang, atau masalah regresi.

Untuk sistem linier Ax=b, Anda dapat menggunakan algoritma Gauss, matriks invers, atau kecocokan linier. Operator A\b menggunakan versi algoritma Gauss.

$$A=[1,2;3,4]; b=[5;6]; A\b$$

-4

4.5

Sebagai contoh lain, kita membuat matriks 200x200 dan jumlah barisnya. Kemudian kita selesaikan Ax = b dengan menggunakan matriks kebalikannya. Kita mengukur kesalahan sebagai deviasi maksimal dari semua elemen dari 1, yang tentu saja merupakan solusi yang benar.

```
>A=normal(200,200); b=sum(A); longest totalmax(abs(inv(A).b-1))
```

8.790745908981989e-13

Jika sistem tidak memiliki solusi, kecocokan linier meminimalkan norma kesalahan Ax-b.

>A=[1,2,3;4,5,6;7,8,9]

1 2 3 4 5 6 7 8 9

Determinan dari matriks ini adalah 0.

>det(A)

0

Matriks Simbolik

Maxima memiliki matriks simbolik. Tentu saja, Maxima dapat digunakan untuk masalah aljabar linier sederhana. Kita bisa mendefinisikan matriks untuk Euler dan Maxima dengan &:=, dan kemudian menggunakannya dalam ekspresi simbolik. Bentuk [...] yang biasa untuk mendefinisikan matriks dapat digunakan dalam Euler untuk mendefinisikan matriks simbolik.

$$\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$

>\$&det(A), \$&factor(%)

$$(a-1)^2 (a+2)$$

>\$&invert(A) with a=0

$$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} 1 & a \\ b & 2 \end{pmatrix}$$

Seperti semua variabel simbolik, matriks ini dapat digunakan dalam ekspresi simbolik lainnya.

>\$&det(A-x*ident(2)), \$&solve(%,x)

$$\left[x = \frac{3 - \sqrt{4 a b + 1}}{2}, x = \frac{\sqrt{4 a b + 1} + 3}{2}\right]$$

$$\left[x = \frac{3 - \sqrt{4 a b + 1}}{2}, x = \frac{\sqrt{4 a b + 1} + 3}{2}\right]$$

Nilai eigen juga dapat dihitung secara otomatis. Hasilnya adalah sebuah vektor dengan dua vektor nilai eigen dan kelipatannya.

>\$&eigenvalues([a,1;1,a])

$$[[a-1,a+1],[1,1]]$$

Untuk mengekstrak vektor eigen tertentu, diperlukan pengindeksan yang cermat.

$$\left[\left[\left[a-1,a+1\right],\left[1,1\right]\right],\left[\left[\left[1,-1\right]\right],\left[\left[1,1\right]\right]\right]\right]$$

$$[1, -1]$$

Matriks simbolik dapat dievaluasi dalam Euler secara numerik seperti halnya ekspresi simbolik lainnya.

$$>A(a=4,b=5)$$

Dalam ekspresi simbolis, gunakan with.

$$\begin{pmatrix} 1 & 4 \\ 5 & 2 \end{pmatrix}$$

Akses ke baris matriks simbolik bekerja seperti halnya matriks numerik.

>\$&A[1]

[1, a]

Ekspresi simbolik dapat berisi sebuah penugasan. Dan itu mengubah matriks A.

>&A[1,1]:=t+1; \$&A

$$\begin{pmatrix} t+1 & a \\ b & 2 \end{pmatrix}$$

Terdapat fungsi-fungsi simbolik dalam Maxima untuk membuat vektor dan matriks. Untuk hal ini, lihat dokumentasi Maxima atau tutorial tentang Maxima di EMT.

$$\left[\frac{1}{j+1}, \frac{1}{j+2}, \frac{1}{j+3}\right]$$

$$\begin{pmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$
$$\begin{pmatrix} \frac{-2}{3} & \frac{1}{2} \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

The result can be evaluated numerically in Euler. For more information about Maxima, see the introduction to Maxima.

>\$&invert(B)()

Euler has also a powerful function xinv(), which makes a bigger effort and gets more exact results.

Note, that with &:= the matrix B has been defined as symbolic in symbolic expressions and as numerical in numerical expressions. So we can use it here.

>longest B.xinv(B)

E.g. the eigenvalues of A can be computed numerically.

Or symbolically. See the tutorial about Maxima for details on this.

>\$&eigenvalues(@A)

$$\begin{bmatrix} \left[\frac{15-3\sqrt{33}}{2},\frac{3\sqrt{33}+15}{2},0\right],[1,1,1] \end{bmatrix}$$
 Nilai Numerik dalam Ekspresi simbolik

Ekspresi simbolik hanyalah sebuah string yang berisi ekspresi. Jika kita ingin mendefinisikan nilai baik untuk ekspresi simbolik maupun ekspresi numerik, kita harus menggunakan "&:=".

Masih ada perbedaan antara bentuk numerik dan bentuk simbolik. Ketika mentransfer matriks ke bentuk simbolik, perkiraan pecahan untuk bilangan real akan digunakan.

>\$&A

$$\begin{pmatrix} 1 & \frac{1146408}{364913} \\ 4 & 5 \end{pmatrix}$$

Untuk menghindari hal ini, ada fungsi "mxmset(variable)".

>mxmset(A); \$&A

$$\begin{pmatrix} 1 & 3.141592653589793 \\ 4 & 5 \end{pmatrix}$$

Maxima juga dapat menghitung dengan angka floating point, dan bahkan dengan angka mengambang yang besar dengan 32 digit. Namun, evaluasinya jauh lebih lambat.

```
>$&bfloat(sqrt(2)), $&float(sqrt(2))
```

1.414213562373095

Ketepatan angka floating point yang besar dapat diubah.

```
>&fpprec:=100; &bfloat(pi)
```

 $3.14159265358979323846264338327950288419716939937510582097494 \\ 4592307816406286208998628034825342117068b0$

Variabel numerik dapat digunakan dalam ekspresi simbolik apa pun dengan menggunakan "@var".

Perhatikan bahwa ini hanya diperlukan, jika variabel telah didefinisikan dengan ":=" atau "=" sebagai variabel numerik.

>B:=[1,pi;3,4]; \$&det(@B)

-5.424777960769379

Di bawah ini, kami menggunakan Euler Math Toolbox (EMT) untuk menghitung suku bunga. Kami melakukannya secara numerik dan simbolis untuk menunjukkan kepada Anda bagaimana Euler dapat digunakan untuk memecahkan masalah kehidupan nyata.

Asumsikan Anda memiliki modal awal sebesar 5000 (katakanlah dalam dolar).

>K=5000

5000

Sekarang kita asumsikan suku bunga 3% per tahun. Mari kita tambahkan satu suku bunga sederhana dan hitung hasilnya.

>K*1.03

5150

Euler juga akan memahami sintaks berikut ini.

>K+K*3%

Tetapi lebih mudah untuk menggunakan faktor

```
>q=1+3%, K*q
```

1.03

5150

Untuk 10 tahun, kita cukup mengalikan faktor-faktor tersebut dan mendapatkan nilai akhir dengan suku bunga majemuk.

>K*q^10

6719.58189672

Untuk tujuan kita, kita bisa menetapkan formatnya menjadi 2 digit setelah titik desimal.

```
>format(12,2); K*q^10
```

6719.58

Mari kita cetak angka yang dibulatkan menjadi 2 digit dalam kalimat lengkap.

```
>"Starting from " + K + "$ you get " + round(K*q^10,2) + "$."
```

Starting from 5000\$ you get 6719.58\$.

Bagaimana jika kita ingin mengetahui hasil antara dari tahun ke-1 hingga tahun ke-9? Untuk hal ini, bahasa matriks Euler sangat membantu. Kita tidak perlu menulis perulangan, tetapi cukup masukkan

```
>K*q^(0:10)
```

```
Real 1 x 11 matrix
```

```
5000.00 5150.00 5304.50 5463.64 ...
```

Bagaimana keajaiban ini bekerja? Pertama, ekspresi 0:10 mengembalikan sebuah vektor bilangan bulat.

```
>short 0:10
```

```
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

Kemudian semua operator dan fungsi dalam Euler dapat diterapkan pada vektor elemen demi elemen. Jadi

```
>short q^(0:10)
```

```
[1, 1.03, 1.0609, 1.0927, 1.1255, 1.1593, 1.1941, 1.2299, 1.2668, 1.3048, 1.3439]
```

adalah vektor faktor q^0 hingga q^10. Ini dikalikan dengan K, dan kita mendapatkan vektor nilai.

```
>VK=K*q^(0:10);
```

Tentu saja, cara yang realistis untuk menghitung suku bunga ini adalah dengan membulatkan ke sen terdekat setelah setiap tahun. Mari kita tambahkan fungsi untuk ini.

```
>function oneyear (K) := round(K*q,2)
```

Mari kita bandingkan kedua hasil tersebut, dengan dan tanpa pembulatan.

>longest oneyear(1234.57), longest 1234.57*q

1271.61 1271.6071

Sekarang tidak ada rumus sederhana untuk tahun ke-n, dan kita harus mengulang selama bertahun-tahun. Euler menyediakan banyak solusi untuk ini.

Cara termudah adalah iterasi fungsi, yang mengulang fungsi yang diberikan beberapa kali.

>VKr=iterate("oneyear",5000,10)

Real 1 x 11 matrix

5000.00 5150.00 5304.50 5463.64 ...

Kita bisa mencetaknya dengan cara yang bersahabat, menggunakan format kami dengan angka desimal yang tetap.

>VKr'

5000.00 5150.00 5304.50 5463.64 5627.55 5796.38 5970.27 6149.38 6333.86 6523.88 6719.60

Untuk mendapatkan elemen tertentu dari vektor, kita menggunakan indeks dalam tanda kurung siku.

>VKr[2], VKr[1:3]

5150.00 5000.00 5150.00 5304.50 Yang mengejutkan, kita juga dapat menggunakan vektor indeks. Ingatlah bahwa 1:3 menghasilkan vektor [1,2,3].

Mari kita bandingkan elemen terakhir dari nilai yang dibulatkan dengan nilai penuh.

>VKr[-1], VK[-1]

6719.60 6719.58

Perbedaannya sangat kecil.

Sekarang kita ambil fungsi yang lebih maju, yang menambahkan tingkat uang tertentu setiap tahun.

```
>function onepay (K) := K*q+R
```

Kita tidak perlu menentukan q atau R untuk definisi fungsi. Hanya jika kita menjalankan perintah, kita harus mendefinisikan nilai-nilai ini. Kami memilih R=200.

```
>R=200; iterate("onepay",5000,10)
```

```
Real 1 x 11 matrix

5000.00 5350.00 5710.50 6081.82 ...
```

Bagaimana jika kita menghapus jumlah yang sama setiap tahun?

```
>R=-200; iterate("onepay",5000,10)
```

```
Real 1 x 11 matrix
5000.00 4950.00 4898.50 4845.45 ...
```

Kami melihat bahwa uangnya berkurang. Jelas, jika kita hanya mendapatkan 150 bunga di tahun pertama, tetapi menghapus 200, kita kehilangan uang setiap tahun.

Bagaimana kita dapat menentukan berapa tahun uang itu akan bertahan? Kita harus menulis perulangan untuk ini. Cara termudah adalah dengan melakukan perulangan yang cukup lama.

```
>VKR=iterate("onepay",5000,50)
```

Real 1 x 51 matrix

5000.00 4950.00 4898.50 4845.45 ...

Dengan menggunakan bahasa matriks, kita dapat menentukan nilai negatif pertama dengan cara berikut.

>min(nonzeros(VKR<0))</pre>

48.00

Alasannya adalah karena nonzeros(VKR<0) mengembalikan vektor dengan indeks i, di mana VKR[i]<0, dan min menghitung indeks minimal.

Karena vektor selalu dimulai dengan indeks 1, maka jawabannya adalah 47 tahun.

Fungsi iterate() memiliki satu trik lagi. Fungsi ini dapat menerima kondisi akhir sebagai argumen. Kemudian fungsi ini akan mengembalikan nilai dan jumlah iterasi.

$$\{x,n\}$$
=iterate("onepay",5000,till="x<0"); x, n,

-19.83 47.00

Mari kita coba menjawab pertanyaan yang lebih ambigu. Anggaplah kita tahu bahwa nilainya adalah 0 setelah 50 tahun. Berapakah tingkat suku bunganya?

Ini adalah pertanyaan yang hanya bisa dijawab secara numerik. Di bawah ini, kami akan menurunkan rumus yang diperlukan. Kemudian Anda akan melihat bahwa tidak ada rumus yang mudah untuk suku bunga. Namun untuk saat ini, kita akan mencari solusi numerik.

Langkah pertama adalah mendefinisikan sebuah fungsi yang melakukan iterasi sebanyak n kali. Kita tambahkan semua parameter ke fungsi ini.

>function
$$f(K,R,P,n) := iterate("x*(1+P/100)+R",K,n;P,R)[-1]$$

Iterasi ini sama seperti di atas.

$$x_{n+1} = x_n \cdot \left(1 + \frac{P}{100}\right) + R$$

Namun, kami tidak lagi menggunakan nilai global R dalam ekspresi kami. Fungsi seperti iterate() memiliki trik khusus di Euler. Anda dapat meneruskan nilai variabel dalam ekspresi sebagai parameter titik koma. Dalam hal ini, P dan R.

Selain itu, kami hanya tertarik pada nilai terakhir. Oleh karena itu, kami mengambil indeks [-1]. Mari kita coba sebuah tes.

```
>f(5000,-200,3,47)
```

-19.83

Sekarang kita bisa menyelesaikan masalah kita.

```
>solve("f(5000,-200,x,50)",3)
```

3.15

Rutin penyelesaian menyelesaikan ekspresi = 0 untuk variabel x. Jawabannya adalah 3,15% per tahun. Kita mengambil nilai awal 3% untuk algoritma ini. Fungsi solve() selalu membutuhkan nilai awal.

Kita dapat menggunakan fungsi yang sama untuk menyelesaikan pertanyaan berikut: Berapa banyak yang dapat kita hapus per tahun sehingga modal awal habis setelah 20 tahun dengan asumsi tingkat bunga 3% per tahun.

```
>solve("f(5000,x,3,20)",-200)
```

Perhatikan bahwa kita tidak dapat menyelesaikan jumlah tahun, karena fungsi kita mengasumsikan n sebagai nilai bilangan bulat.

Solusi Simbolik untuk Masalah Suku Bunga

Kita dapat menggunakan bagian simbolik dari Euler untuk mempelajari masalah ini. Pertama, kita mendefinisikan fungsi onepay() secara simbolik.

$$R + q K$$

Sekarang kita bisa mengulangi hal ini.

$$q^{3} R + q^{2} R + q R + R + q^{4} K$$

Kita melihat sebuah pola. Setelah n periode, kita memiliki

$$K_n = q^n K + R(1 + q + \dots + q^{n-1}) = q^n K + \frac{q^n - 1}{q - 1} R$$

Rumus tersebut adalah rumus untuk jumlah geometris, yang dikenal dengan Maxima.

 $\mbox{$\sim$} \mbox{$\sim$} \mbox{$\sim$$

$$\sum_{k=0}^{n-1} q^k = \frac{q^n - 1}{q - 1}$$

Ini sedikit rumit. Penjumlahan dievaluasi dengan flag "simpsum" untuk menguranginya menjadi hasil bagi.

Mari kita buat sebuah fungsi untuk ini.

>function
$$fs(K,R,P,n) &= (1+P/100)^n*K + ((1+P/100)^n-1)/(P/100)*R; &&fs(K,R,P,n)$$

$$\frac{100\left(\left(\frac{P}{100}+1\right)^{n}-1\right)R}{P}+K\left(\frac{P}{100}+1\right)^{n}$$

Fungsi ini melakukan hal yang sama seperti fungsi f kita sebelumnya. Tetapi fungsi ini lebih efektif.

- -19.82504734650985
- -19.82504734652684

Sekarang kita dapat menggunakannya untuk menanyakan waktu n. Kapan modal kita habis? Perkiraan awal kita adalah 30 tahun.

20.51

Jawaban ini mengatakan bahwa nilai tersebut akan menjadi negatif setelah 21 tahun.

Kita juga bisa menggunakan sisi simbolis dari Euler untuk menghitung rumus pembayaran.

Asumsikan kita mendapatkan pinjaman sebesar K, dan membayar n
 kali pembayaran sebesar R (dimulai setelah tahun pertama) sehingga menyisakan sisa utang sebesar K
n (pada saat pembayaran terakhir). Rumus untuk hal ini adalah sebagai berikut

$$\frac{100\left(\left(\frac{P}{100}+1\right)^n-1\right)R}{P}+K\left(\frac{P}{100}+1\right)^n=Kn$$

Biasanya rumus ini diberikan dalam bentuk

$$i = \frac{P}{100}$$

>equ &= (equ with P=100*i); \$&equ

$$\frac{((i+1)^n - 1) R}{i} + (i+1)^n K = Kn$$

Kita dapat menyelesaikan laju R secara simbolis.

>\$&solve(equ,R)

$$R = \frac{i Kn - i (i+1)^n K}{(i+1)^n - 1}$$

Seperti yang dapat Anda lihat dari rumusnya, fungsi ini mengembalikan kesalahan floating point untuk i = 0. Euler tetap memplotnya.

Tentu saja, kita memiliki batas berikut.

$$>$$
\$&limit(R(5000,0,x,10),x,0)

$$\lim_{x \to 0} R(5000, 0, x, 10)$$

Jelasnya, tanpa bunga kita harus membayar kembali 10 suku bunga 500.

Persamaan ini juga dapat diselesaikan untuk n. Akan terlihat lebih baik jika kita menerapkan beberapa penyederhanaan.

$$n = \frac{\log\left(\frac{R+iKn}{R+iK}\right)}{\log(i+1)}$$

Latihan soal no 47,74,122 memfaktorkan no 61,62 sistem peridaksamaan no 31,36,87 sistem persamaan