Asignatura: Matemáticas CCSS – 2ºBachillerato

Tema 4 – Matrices y determinantes : CCSS Teoría - 1 - Introducción al concepto de matriz

página 1/1

Teoría - Tema 4

CCSS Teoría - 1 - Introducción al concepto de matriz

Concepto de matriz

Consideremos el cuerpo \mathbb{R} de los números reales. Una tabla de $m \times n$ números dispuestos en m filas y n columnas de la forma:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & &$$

Recibe el nombre de matriz de orden $m \times n$ de números reales.

El elemento a_{ii} ocupa el lugar determinado por la fila i y la columna j .

Otra forma de denotar la matriz arbitraria A , de manera más compacta, es $A = (a_{ij})$. Sobreentendiéndose que $1 \le i \le m$ y $1 \le j \le n$.

El conjunto de todas las matrices de orden $m \times n$ se representa por $M_{m,n}$ o bien $M_{m \times n}$.

Si en una matriz el número de filas es igual al número de columnas, m=n, se dice que es una **matriz cuadrada de orden** n. El conjunto de todas las matrices de orden $n\times n$ se representa por $M_{n,n}$, por $M_{n\times n}$ o bien simplemente M_n .

Si el número de filas no coincide con el número de columnas, $m \neq n$, se dice que la **matriz es rectangular de orden** $m \times n$.

Si la matriz solo posee una fila, m=1, se habla de matriz fila. Si la matriz solo posee una columna, n=1, se habla de matriz columna. Las filas y las columnas de una matriz se pueden ver como las componentes de un vector.

Igualdad de matrices. Dos matrices $A = (a_{ij})$ y $B = (b_{ij})$ de orden $m \times n$ son iguales si y solo si son iguales todos los elementos que ocupan las mismas posiciones. Es decir, A = B si se cumple $(a_{ij}) = (b_{ij})$, $\forall i, j$.