Asignatura: Matemáticas II – 2ºBachillerato

Tema 3: Ampliación a derivabilidad y Teoremas Teoría - 10 - Teorema de Rolle

página 1/2

Teoría - Tema 3

Teoría - 10 - Teorema de Rolle

Teorema de Rolle

Si una gráfica toma valores iguales en los extremos del intervalo [a,b], y la función es continua en ese intervalo y derivable en (a,b), es intuitivo pensar que existirá al menos un punto $c\!\in\!(a,b)$ donde la curva alcance, de manera suave, un máximo o mínimo relativo. Y en ese punto podremos aplicar la condición necesaria de extremos relativos: $f'(c)\!=\!0$.

Teorema de Rolle

Sea f(x) una función continua en [a,b] , derivable en (a,b) y verifica que f(a)=f(b) , implica que $\exists c \in (a,b) / f'(c) = 0$

Demostración: Por el teorema de continuidad de Bolzano-Weierstrass sabemos que toda función continua en $\begin{bmatrix} a,b \end{bmatrix}$ alcanza dentro del intervalo su máximo absoluto $M\acute{a}x$ y su mínimo absoluto $M\acute{i}n$ en dicho intervalo.

- Si $\textit{M\'{a}x} = \textit{M\'{i}n} \to \textit{M\'{i}n} = f(x) = \textit{M\'{a}x}$, $\forall c \in [a,b]$ ya que f(a) = f(b). Es decir, la función f(x) es constante \to Su derivada será igual a 0 en todos los puntos del intervalo \to Por lo tanto existe al menos un punto del intervalo donde f'(c) = 0.
- Si $M \acute{a}x \neq M \acute{i}n$, al menos uno de los extremos será distinto del valor f(a) = f(b). Supongamos $M \acute{a}x \neq f(a) = f(b)$. Por el teorema de Bolzano-Weierstrass sabemos que la función alcanza su máximo absoluto dentro del intervalo abierto, ya que el máximo no coincide con el valor de la función en los extremos $\rightarrow \exists c \in (a,b) / f(c) = M \acute{a}x \rightarrow Y$ todo máximo absoluto es, a su vez, máximo relativo $\rightarrow f'(c) = 0$.

Si suponemos $\mathit{Min} \neq f(a) = f(b)$ el razonamiento es análogo, por lo que $\exists c \in (a,b) / f(c) = \mathit{Min} \rightarrow f'(c) = 0$. Quedando así demostrado el teorema.

Ejemplo 1 resuelto

Aplica el Teorema de Rolle a la función $f(x)=x^2+x+1$ en el intervalo [-2,1] .

 $f(x)=x^2+x+1$ \rightarrow Continua y derivable en todo \mathbb{R} por ser polinómica. f(-2)=3 , f(1)=3

Se cumplen las condiciones del Teorema de Rolle para el intervalo [-2,1] , por lo que podemos afirmar que $\exists c \in (-2,1)/f'(c)=0$.

En efecto:
$$f'(x) = 2x + 1 \rightarrow f'(x) = 0 \rightarrow 2x + 1 = 0 \rightarrow x = \frac{-1}{2} \rightarrow \frac{-1}{2} \in (-2,1)$$

Tema 3: Ampliación a derivabilidad y Teoremas Teoría - 10 - Teorema de Rolle

página 2/2

La interpretación geométrica del teorema se entiende fácilmente. Entre los extremos a y b con f(a)=f(b) , se alcanza al menos un extremo relativo. Es decir, un punto con pendiente paralela al eje horizontal OX (**pendiente 0 = derivada nula**).

----- f(x) arbitraria , con extremo relativo comprendido en el intervalo (a,b)

