Asignatura: Matemáticas I – 1ºBachillerato

Tema 3 – Complejos: Teoría - 17 - Teorema fundamental del álgebra

página 1/1

Teoría - Tema 3

Teoría - 17 - Teorema fundamental del álgebra

Raíces de una ecuación. Teorema fundamental del álgebra

Si $z \in \mathbb{C}$ es solución de una ecuación polinómica con coeficientes reales, su conjugado \overline{z} también es solución de la misma ecuación.

Podemos demostrar este enunciado, de manera sencilla, para un polinomio P(x) de grado 2, de coeficientes reales, y con dos raíces complejas z_1 y z_2 . Si factorizamos el polinomio en sus raíces:

$$P(x)=(x-z_1)(x-z_2)$$
 , con $x \in \mathbb{R}$

Y el resultado de este producto debe ser real si x es real. Y, como ya demostramos en apartados anteriores, z_1 y z_2 deben ser conjugados para que su producto sea real:

$$z_2 = \overline{z_1} \rightarrow P(x) = (x - z_1)(x - \overline{z_1}) \rightarrow P(x) = |x - z_1|^2 \in \mathbb{R}$$
, si $x \in \mathbb{R}$

De manera general podemos afirmar (sin demostrar) que todo polinomio de grado n, $n \in \mathbb{N}$, con coeficientes reales o complejos, tiene n raíces (Teorema fundamental del álgebra).