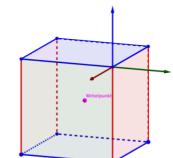
Aus eckig wird rund!

Drehen statt Abschneiden

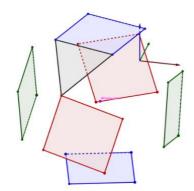
Zunächst zwei Punkte mit den Koordinaten x_1,y_1,z_1 konstruieren, so dass gilt: $A=(-x_1,-y_1,-z_1)$ und $B=(x_1,-y_1,-z_1)$. Da hat die Kantenlänge x_1+x_1

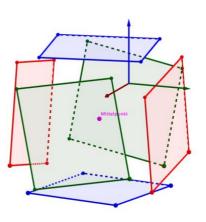
1. Konstruktion eines Würfels der Kantenlänge a und einer Kugel mit dem Radius:

$$R = \frac{a}{2} \sqrt{\frac{2-2t}{1-2t}} \qquad \qquad t = \cos(\zeta) = \frac{1}{6} \left(\sqrt[3]{19 + 3\sqrt{33}} + \sqrt[3]{19 - 3\sqrt{33}} - 2 \right) \approx 0,4196433776$$
 Für t gilt:


- 2. Geraden durch alle Würfelecken und Schnittpunkte auf die Kugel.
- 3. 3 Vektoren konstruieren, die vom Würfel zu den Schnittpunkten führen.
- 4. Einen Drehwinkel definieren: $\sin \omega = \frac{2t}{(1-2t)(1+2t)} 1$
- 5. Einen Schieberegler erstellen mit min: $-\frac{\omega}{2}$ max: $\frac{\omega}{2}$

Cubus Simus


© W. Dutkowski, 10/2025


$$t=rac{1}{6}\left(\sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}-2
ight)pprox0.42$$
Radiusvergrößerung = 0

- 6. Einen Schiebregler von 0 1 erstellen.
- 7. Alle Eckpunkte zuerst um die Vektoren v_x, v_y, v_z bzw. $-v_x, -v_y, -v_z$ und dem Schiebreglerwert verschieben. Diese Punkte alle um den Mittelpunkt um ω bzw $-\omega$ drehen.
- 8. Die entstandenen Lücken mit Vielecken ausfüllen.

TIPP:

Frühzeit die Objekt einfärben, um die Übersicht zu behalten