Circular Functions

\[y \]

\[\begin{array}{c}
\sin \theta = \frac{1}{\cos \theta} \\
\cos \theta = \frac{1}{\sin \theta}
\end{array} \]

Hypotenuse

Adjacent

\[\theta \]

Name:
Circular Functions (Trigonometry)

Circular functions Revision

Where do $\sin \theta, \cos \theta$ and $\tan \theta$ come from?
Unit circle (of radius 1)

- $\cos \theta$ is the x – coordinate
- $\sin \theta$ is the y – coordinate
- $\tan \theta = \frac{\sin \theta}{\cos \theta}$
- all 3 are measures of length.
- Remember SOH CAH TOA
- Exact values:

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>$\frac{30^\circ}{6}$</th>
<th>$\frac{45^\circ}{4}$</th>
<th>$\frac{60^\circ}{3}$</th>
<th>$\frac{90^\circ}{2}$</th>
<th>$\frac{180^\circ}{\pi}$</th>
<th>$\frac{270^\circ}{3\pi}$</th>
<th>$\frac{360^\circ}{2\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cos \theta$</td>
<td>1</td>
<td>$\frac{\sqrt{3}}{2}$</td>
<td>$\frac{\sqrt{2}}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\sin \theta$</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{\sqrt{2}}{2}$</td>
<td>$\frac{\sqrt{3}}{2}$</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>$\tan \theta$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$</td>
<td>1</td>
<td>$\sqrt{3}$</td>
<td>undefined</td>
<td>0</td>
<td>undefined</td>
<td>0</td>
</tr>
</tbody>
</table>

- Angle conversions (between radians and degrees).
• Quadrants and symmetry:
 o All Students Talk C.. (ASTC)

Finding Exact values:

Example: What is the exact value of:
(a) \(\sin \frac{5\pi}{4} \); (b) \(\tan \frac{-2\pi}{3} \).

(a) 1. Sign: 3\(^{rd}\) Quadrant \(\Rightarrow\) -ve
 2. Angle Equivalent (1\(^{st}\) Quadrant): \(\frac{5\pi}{4} = \pi + \frac{\pi}{4} \Rightarrow \frac{\pi}{4} \)
 3. So: \(\sin \frac{5\pi}{4} = -\sin \frac{\pi}{4} = -\frac{1}{\sqrt{2}} \) or \(-\frac{\sqrt{2}}{2} \)

(b) 1. Sign: 2\(^{nd}\) “negative” Quadrant \(\Rightarrow\) +ve
 2. Angle Equivalent (1\(^{st}\) Quadrant): \(\frac{-2\pi}{3} = -\pi + \frac{\pi}{3} \Rightarrow \frac{\pi}{3} \)
 3. So: \(\tan \frac{-2\pi}{3} = \tan \frac{\pi}{3} = \sqrt{3} \)

Jump Start Holiday Questions

Review: radians, definitions, exact values, symmetry

| Ex6A Q 1, 2, 3, 4 (ace for all); Ex6B Q 1, 2acegik, 3 acegikmoqsu, 4 aceg, 5 abdfgj, 6 Ex6C Q 2 |

CALCULATOR MODE: Always work in radians
Solving equations involving circular functions.

Finding axis intercepts:
1. Y-intercepts:
 - \(f(0) \) or \(x = 0 \).
 - E.g. what is the Y-intercept of \(f(x) = 3\sin 2\left(x - \frac{\pi}{6} \right) + 2 \)

2. X-intercepts:
 - \(f(x) = 0 \) or \(y = 0 \).

Examples: Find all values of \(\theta \) for:
(a) \(\\{ \theta : \cos \theta = \frac{\sqrt{3}}{2}, \ \theta \in [0, 2\pi] \} \)

(b) \(\{ \theta : \sin \theta = -0.7, \ \theta \in [0, 2\pi] \} \)
(c) \[\theta : 2\sin \theta + 1 = 0, \quad \theta \in [-2\pi, 2\pi] \]

(d) \[4\cos 2\theta + 2 = 0, \quad \theta \in [0, 2\pi] \]

- Ex6E 1 ace, 2 ac, 3 ac, 4 ab, 5 abc, 6 ace, 7 ace, 8 acegi; Ex6J 4, 5, 6

Using the TI-Nspire

Use Solve from the Algebra menu as shown.

Using the TI-Nspire

To find the x-axis intercepts, Enter
\[\text{solve}(3 \tan \left(2x - \frac{\pi}{3}\right) = -\sqrt{3}, x) \quad \frac{\pi}{6} \leq x \leq \frac{13\pi}{6} \]

2011 Exam1
Graphs of Circular Functions

\[y = \sin \theta \]

- Period = \(2\pi\)
- Amplitude = 1
- Range: \([-1, 1]\)

\[y = \cos \theta \]

\[y = \tan \theta \]

- Period = \(\pi\)
- We don’t refer to the amplitude for \(y = \tan \theta\)
- Range: \(R\)
Transformations of $y = \sin \theta$ & $y = \cos \theta$

- a: a dilation of factor “a” from the x-axis.
- n: a dilation of factor “$\frac{1}{n}$” from the y-axis.
- b: a translation of b units along the x-axis.
- c: a translation of c units along the y-axis.

1. Dilations
 (a) The effect of “a”

Graph the following graphs: (i) $y = 2\cos \theta$; (ii) $y = \frac{\sin \theta}{2}$; where $\theta \in [0, 2\pi]$

- “a” affects the amplitude.

(b) The effect of “n”

Graph the following graphs: (i) $y = 3\cos 2\theta$; (ii) $y = 3\sin \left(\frac{\theta}{2}\right)$; where $\theta \in [0, 2\pi]$

- “n” affects the period.
- $\text{period} = \frac{2\pi}{n}$
2. Reflections.
- Two types:
 - Reflection in the x-axis: $-f(x)$
 - Reflection in the y-axis: $f(-x)$

Examples:
Sketch the graphs of the following:
(a) $y = -3 \sin 2\theta$; (b) $y = 2 \cos \left(-\frac{\pi \theta}{3}\right)$; where $\theta \in [0, \ 2\pi]$

3. Translations
(a) The effect of “c”
Sketch the following: (i) $y = 3 \sin \theta + 3$; (ii) $y = 2 \cos 2\theta - 3$; where $\theta \in [0, \ 2\pi]$
(i)
(ii)
(b) The effect of “b”
Sketch the following:
(i) \(y = 2\sin\left(\theta + \frac{\pi}{4}\right) \); (ii) \(y = 3\cos\left(\theta - \frac{\pi}{3}\right) \); where \(\theta \in [0, 2\pi] \)

Combining all transformations
Example: Sketch the graph of \(f(\theta) = 3\sin\left(2\theta - \frac{\pi}{2}\right) + 2 \), \(\theta \in [0, 2\pi] \)
Rewrite: \(f(\theta) = 3\sin\left(2\left(\theta - \frac{\pi}{4}\right)\right) + 2 \)
\(a = 3, b = \frac{\pi}{4}, c = 2 \) and \(n = 2 \)
Sketch \(f(\theta) = 3\sin 2\theta \) first:
Secondly with translations:

Note: X-intercepts need to be found!!
- Ex6F 1 adfhi, 2, 4, 5; Ex6G 1, 2 ac, 3 ef, 5 acfgh, 6, 7
Graphs & Transformations of the Tangent function

Example: Sketch $y = 3\tan\left(2x - \frac{\pi}{3}\right)$ for $\frac{\pi}{6} \leq x \leq \frac{13\pi}{6}$

Rewrite: $y = 3\tan \left(2\left(x - \frac{\pi}{6}\right)\right)$

Ex6J 1, 2, 7, 8, 9
Addition of ordinates (add the ‘y’ values)

Example:

(a) On the same set of axes sketch \(f(x) = 2\sin x \) and \(g(x) = 3\cos 2x \) for \(0 \leq x \leq 2\pi \);
(b) Use addition of ordinates to sketch the graph of \(y = 2\sin x + 3\cos 2x \).

Note: For \(y = 2\sin(x) - 3\cos(2x) \) it is easier to do \(y = 2\sin(x) + (-3\cos(2x)) \)

- Ex6H 1 ace
Solving Equations where both \sin & \cos appear

Example: Solve for x, $x \in [0, 2\pi]$:

(i) $\sin x = 0.5 \cos x$

(ii) $\sin 3x - \sqrt{3} \cos 3x = 0$

- Ex6J 10, 11 acegi, 12
General Solutions to Circular Functions

Example: Solve \(\cos x = \frac{1}{2} \)

\[
\cos x = \frac{1}{2}
\]

1. Cos positive Quad ...
2. Angle :
3. \(x = \ldots \)

Solution:
\[
x = \ldots,
\]

generally:
\[
x = \quad \text{Check: } n = 0, n = 1, n = -1
\]

So in general terms:

Example: Solve \(\sin x = \frac{1}{2} \)

\[
\sin x = \frac{1}{2}
\]

1. Sin positive Quad ...
2. Angle :
3. \(x = \ldots \)

Solution:
\[
x = \ldots,
\]

generally:
\[
x = \quad \text{Check: } n = 0, n = 1, n = -1
\]

or
\[
x = \quad \text{Check: } n = 0, n = 1, n = -1
\]

So in general terms:

The above can be simplified to

\[
\tan x = a \quad \Rightarrow \quad x = n\pi + \tan^{-1}(a), \quad n \in \mathbb{Z}
\]
Example 1: Find the general solution for \(2 \sin \left(x + \frac{\pi}{3} \right) = -1 \)

Solution:

Example 2: Find the general solution to \(2 \cos \left(2x + \frac{\pi}{4} \right) = \sqrt{2} \), and hence find all the solutions from \((-2\pi, 2\pi)\).

Solution:
Using the TI-Nspire

Make sure the calculator is in Radian mode.

a Use Solve from the Algebra menu and complete as shown.
 Note the use of \(\frac{1}{2} \) rather than 0.5 to ensure that the answer is exact.

b Complete as shown.

c Complete as shown.
Determining Rules for Circular Functions

Example: The graph shown has the rule of the form: \(y = a \cos(n(t - b)) + c \), find \(a, b, c \) & \(n \).

\[
\begin{align*}
\text{Ex6I} & \quad 1, 2, 4, 5, 6, 7, 8, 9; \quad \text{Ex6J} \quad 14, 15
\end{align*}
\]
Applications of Circular Functions

worked example 24

The temperature in degrees Celsius on a day in May at Mt Buller is expected to follow the model

\[T = 5 - 7 \cos \left(\frac{\pi}{12} (t - 4) \right) \]

where \(t \) is the number of hours after midnight. The snow-making machines will only operate efficiently when the temperature is below 5°C. Sketch the graph of the temperature for one full day, and predict the period of time for which the machine will be able to operate.

- Ex6L 1, 2, 4, 6 Ex 6N
Past Exam Questions

2008

Question 3
Solve the equation \(\cos \left(\frac{3x}{2} \right) = \frac{1}{2} \) for \(x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \).

2 marks

Question 18
Let \(f: \left[0, \frac{\pi}{2} \right] \to \mathbb{R}, f(x) = \sin(4x) + 1 \). The graph of \(f \) is transformed by a reflection in the x-axis followed by a dilation of factor 4 from the y-axis.

The resulting graph is defined by

A. \(g: \left[0, \frac{\pi}{2} \right] \to \mathbb{R}, g(x) = -1 - 4 \sin(4x) \)

B. \(g: [0, 2\pi] \to \mathbb{R}, g(x) = -1 - \sin(16x) \)

C. \(g: \left[0, \frac{\pi}{2} \right] \to \mathbb{R}, g(x) = 1 - \sin(x) \)

D. \(g: [0, 2\pi] \to \mathbb{R}, g(x) = 1 - \sin(4x) \)

E. \(g: [0, 2\pi] \to \mathbb{R}, g(x) = -1 - \sin(x) \)

2009

Question 4
Solve the equation \(\tan(2x) = \sqrt{3} \) for \(x \in \left\{ -\frac{\pi}{4}, \frac{\pi}{4} \right\} \cup \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\} \).

3 marks
Question 4
The general solution to the equation \(\sin(2x) = -1 \) is

A. \(x = n\pi - \frac{\pi}{4}, \ n \in Z \)
B. \(x = 2n\pi + \frac{\pi}{4} \) or \(x = 2n\pi - \frac{\pi}{4}, \ n \in Z \)
C. \(x = \frac{n\pi}{2} + (-1)^n \frac{\pi}{2}, \ n \in Z \)
D. \(x = \frac{n\pi}{2} + (-1)^n \frac{\pi}{4}, \ n \in Z \)
E. \(x = n\pi + \frac{\pi}{4} \) or \(x = 2n\pi + \frac{\pi}{4}, \ n \in Z \)

Question 12
A transformation \(T: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) that maps the curve with equation \(y = \sin(x) \) onto the curve with equation \(y = 1 - 3 \sin(2x + \pi) \) is given by

A. \(T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \pi \\ 1 \end{bmatrix} \)
B. \(T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 2 \pi \\ 1 \end{bmatrix} \)
C. \(T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \pi \\ 1 \end{bmatrix} \)
D. \(T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -\frac{\pi}{2} \\ 1 \end{bmatrix} \)
E. \(T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -\frac{\pi}{2} \\ -1 \end{bmatrix} \)
Question 4

a. Write down the amplitude and period of the function

\[f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = 4 \sin \left(\frac{x + \pi}{3} \right). \]

2 marks

b. Solve the equation \(\sqrt{3} \sin(x) = \cos(x) \) for \(x \in [-\pi, \pi] \).

2 marks

Question 3

An ancient civilisation buried its kings and queens in tombs in the shape of a square-based pyramid, \(WABCD \).

The kings and queens were each buried in a pyramid with \(WA = WB = WC = WD = 10 \) m.

Each of the isosceles triangle faces is congruent to each of the other triangular faces.

The base angle of each of these triangles is \(x \), where \(\frac{\pi}{4} < x < \frac{\pi}{2} \).

Pyramid \(WABCD \) and a face of the pyramid, \(WAB \), are shown here.

\[Z \] is the midpoint of \(AB \).

a. i. Find \(AB \) in terms of \(x \).
b. Show that the total surface area (including the base), \(S \text{ m}^2 \), of the pyramid, \(WABCD \), is given by
\[
S = 400(\cos^2(\alpha) + \cos(\gamma) \sin(\gamma))
\]

2 marks

c. Find \(WT \), the height of the pyramid \(WABCD \), in terms of \(x \).

2 marks

d. The volume of any pyramid is given by the formula
\[
\text{Volume} = \frac{1}{3} \times \text{area of base} \times \text{vertical height}
\]

Show that the volume, \(T \text{ m}^3 \), of the pyramid \(WABCD \) is
\[
T = \frac{4000}{3} \sqrt{\cos^4 x - 2 \cos^6 x}
\]
2011

Question 3
a. State the range and period of the function
\[h: \mathbb{R} \rightarrow \mathbb{R}, \ h(x) = 4 + 3\cos\left(\frac{\pi x}{2}\right). \]

b. Solve the equation
\[\sin\left(2x + \frac{\pi}{3}\right) = \frac{1}{2} \text{ for } x \in [0, \pi]. \]

Question 10
The figure shown represents a wire frame where \(ABCE\) is a convex quadrilateral. The point \(D\) is on line segment \(EC\) with \(AB = ED = 2\) cm and \(BC = a\) cm, where \(a\) is a positive constant.
\[\angle BAE = \angle CEA = \frac{\pi}{2} \]
Let \(\angle CBD = \theta\) where \(0 < \theta < \frac{\pi}{2}\).

![Diagram showing a wire frame with points A, B, C, D, and E, with angles and lengths labeled.]

a. Find \(BD\) and \(CD\) in terms of \(a\) and \(\theta\).

Question 15

The graph shown could have equation

A. \(y = 2\cos\left(x + \frac{\pi}{6}\right) + 1 \)

B. \(y = 2\cos 4\left(x - \frac{\pi}{6}\right) + 1 \)

C. \(y = 4\sin 2\left(x - \frac{\pi}{12}\right) - 1 \)

D. \(y = 3\cos\left(2x + \frac{\pi}{6}\right) - 1 \)

E. \(y = 2\sin\left(4x + \frac{2\pi}{3}\right) - 1 \)

2012

Question 6

The graphs of \(y = \cos(x) \) and \(y = a \sin(x) \), where \(a \) is a real constant, have a point of intersection at \(x = \frac{\pi}{3} \).

a. Find the value of \(a \).

2 marks

b. If \(x \in [0, 2\pi] \), find the \(x \)-coordinate of the other point of intersection of the two graphs.

1 mark
Question 1
The function with rule \(f(x) = -3 \sin\left(\frac{\pi x}{5}\right) \) has period
A. 3
B. 5
C. 10
D. \(\frac{\pi}{5} \)
E. \(\frac{\pi}{10} \)

Question 6
A section of the graph of \(f \) is shown below.

The rule of \(f \) could be
A. \(f(x) = \tan x \)
B. \(f(x) = \tan \left(x - \frac{\pi}{4} \right) \)
C. \(f(x) = \tan \left(2 \left(x - \frac{\pi}{4} \right) \right) \)
D. \(f(x) = \tan \left(2 \left(x - \frac{\pi}{2} \right) \right) \)
E. \(f(x) = \tan \left(\frac{1}{2} \left(x - \frac{\pi}{4} \right) \right) \)
Question 7
The temperature, \(T \) °C, inside a building \(t \) hours after midnight is given by the function

\[
f \colon [0, 24] \to \mathbb{R}, \quad T(t) = 22 - 10 \cos \left(\frac{\pi}{12} (t - 2) \right)
\]

The average temperature inside the building between 2 am and 2 pm is

A. 10 °C
B. 12 °C
C. 20 °C
D. 22 °C
E. 32 °C

Question 19
A function \(f \) has the following two properties for all real values of \(\theta \).

\[
f(\pi - \theta) = -f(\theta) \quad \text{and} \quad f(\pi + \theta) = -f(-\theta)
\]

A possible rule for \(f \) is

A. \(f(x) = \sin(x) \)
B. \(f(x) = \cos(x) \)
C. \(f(x) = \tan(x) \)
D. \(f(x) = \sin \left(\frac{x}{2} \right) \)
E. \(f(x) = \tan(2x) \)

2013

Question 4 (2 marks)
Solve the equation \(\sin \left(\frac{x}{2} \right) = -\frac{1}{2} \) for \(x \in [2\pi, 4\pi] \).

\[
\text{--}
\]

\[
\text{--}
\]
Question 1
The function with rule \(f(x) = -3 \tan(2\pi x) \) has period

A. \(\frac{2}{\pi} \)

B. 2

C. \(\frac{1}{2} \)

D. \(\frac{1}{4} \)

E. \(2\pi \)

Question 7
The function \(g: [-\alpha, \alpha] \to \mathbb{R}, \ g(x) = \sin \left(2 \left(x - \frac{\pi}{6} \right) \right) \) has an inverse function. The maximum possible value of \(\alpha \) is

A. \(\frac{\pi}{12} \)

B. 1

C. \(\frac{\pi}{6} \)

D. \(\frac{\pi}{4} \)

E. \(\frac{\pi}{2} \)
Question 1 (12 marks)

Trigg the gardener is working in a temperature-controlled greenhouse. During a particular 24-hour time interval, the temperature (T °C) is given by $T(t) = 25 + 2\cos\left(\frac{\pi t}{8}\right)$, $0 \leq t \leq 24$, where t is the time in hours from the beginning of the 24-hour time interval.

a. State the maximum temperature in the greenhouse and the values of t when this occurs. 2 marks

b. State the period of the function T. 1 mark

c. Find the smallest value of t for which $T = 26$. 2 marks

d. For how many hours during the 24-hour time interval is $T \geq 26$? 2 marks
Question 1 (7 marks)
The population of wombats in a particular location varies according to the rule
\[n(t) = 1200 + 400 \cos \left(\frac{\pi t}{3} \right), \]
where \(n \) is the number of wombats and \(t \) is the number of months after 1 March 2013.

a. Find the period and amplitude of the function \(n \).

b. Find the maximum and minimum populations of wombats in this location.

c. Find \(n(10) \).

d. Over the 12 months from 1 March 2013, find the fraction of time when the population of wombats in this location was less than \(n(10) \).

Question 3 (2 marks)
Solve \(2 \cos(2x) = -\sqrt{3} \) for \(x \), where \(0 \leq x \leq \pi \).
Question 5 (3 marks)
On any given day, the depth of water in a river is modelled by the function
\[h(t) = 14 + 8 \sin \left(\frac{\pi t}{12} \right) \quad 0 \leq t \leq 24 \]
where \(h \) is the depth of water, in metres, and \(t \) is the time, in hours, after 6 am.
a. Find the minimum depth of the water in the river. 1 mark

b. Find the values of \(t \) for which \(h(t) = 10 \). 2 marks

Question 10 (7 marks)
The diagram below shows a point, \(T \), on a circle. The circle has radius 2 and centre at the point \(C \) with coordinates \((2, 0)\). The angle \(ECT \) is \(\theta \), where \(0 < \theta \leq \frac{\pi}{2} \).

![Diagram showing a circle with points \(C \), \(E \), \(X \), \(D(4, d) \), \(B(2, b) \), and \(T \) on the circumference.]

The diagram also shows the tangent to the circle at \(T \). This tangent is perpendicular to \(CT \) and intersects the x-axis at point \(X \) and the y-axis at point \(Y \).
a. Find the coordinates of \(T \) in terms of \(\theta \). 1 mark

b. Find the coordinates of \(T \) in terms of \(\theta \). 2 marks

c. Find the coordinates of \(X \) in terms of \(\theta \). 2 marks

d. Find the coordinates of \(Y \) in terms of \(\theta \). 2 marks

2015
b. Find the gradient of the tangent to the circle at T in terms of θ. 1 mark

\[
\cos(\theta)x + \sin(\theta)y = 2 + 2\cos(\theta)
\]

\[\text{\text{ }}\]

\[\text{\text{ }}\]

\[\text{\text{ }}\]

\[\text{\text{ }}\]

c. The equation of the tangent to the circle at T can be expressed as

\[\cos(\theta)x + \sin(\theta)y = 2 + 2\cos(\theta)\]

i. Point B, with coordinates $(2, b)$, is on the line segment XT.

Find b in terms of θ. 1 mark

\[\text{\text{ }}\]

\[\text{\text{ }}\]

\[\text{\text{ }}\]

\[\text{\text{ }}\]

\[\text{\text{ }}\]

ii. Point D, with coordinates $(4, d)$, is on the line segment XT.

Find d in terms of θ. 1 mark

\[\text{\text{ }}\]

\[\text{\text{ }}\]

\[\text{\text{ }}\]

\[\text{\text{ }}\]

\[\text{\text{ }}\]

Question 1
Let $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = 2\sin(3x) - 3$.
The period and range of this function are respectively

A. period $= \frac{2\pi}{3}$ and range $= [-5, -1]$

B. period $= \frac{2\pi}{3}$ and range $= [-2, 2]$

C. period $= \frac{\pi}{3}$ and range $= [-1, 5]$

D. period $= 3\pi$ and range $= [-1, 5]$

E. period $= 3\pi$ and range $= [-2, 2]$