Sets Review

Ms. Duffy

Day 1 Notation Subsets

Note: Answers to practice questions are in red

What is a set?

A set is a clearly defined collection.

What are elements?

The items in a set are referred to as the elements of a set.

$A=\{x \mid x$ is greater than 5 and less than 17\}

Writing out the rule

Writing out the elements

- Capital letter to name the set
- Open curly brackets
- $X \mid X$ is ..
- Make sure rule clearly defines the set
- Close curly brackets
- Capital letter to name the set
- Open curly brackets
- Commas to separate elements
- Close curly brackets
$A=\{x \mid x$ is a natural number less than 5$\}$

$$
A=\{4,3,2,1\}
$$

WHAT WENT WRONG?

WHAT WENT WRONG?

$$
c=\{x \text { is a whole number }\}
$$

WHAT WENT WRONG?

$c=\{x$ is a whole number $\}$

$$
C=\{x \mid x \text { is a whole number }\}
$$

WHAT WENT WRONG?

$$
M=\{x \mid 4,5,6,7\}
$$

WHAT WENT WRONG?

$$
M=\{x \mid 4,5,6,7\}
$$

$$
M=\{4,5,6,7\}
$$

WHAT WENT WRONG?

$A=x \mid x$ is an even number

WHAT WENT WRONG?

$A=x \mid x$ is an even number

$$
A=\{x \mid x \text { is an even number }\}
$$

WHAT WENT WRONG?

$b=\{x \mid x$ is a whole number greater than 5 , less than 9$\}$

$$
B=\{x \mid x \text { is a whole number greater than } 5 \text {, less than } 9\}
$$

ϵ

This symbol means "is an element of"

$5 \in \mathrm{~A}$

5 is an element of A

This symbol means "is not an element of"

$7 \notin \mathrm{~A}$

7 is NOT an element of A

null set (or empty) set is

a set that contains NO elements

Example: The set of the names of people in the world taller than 4 metres.

$$
\varnothing \text { or }\}
$$

The symbol for the null set (or empty) set

$$
\varnothing \text { or }\}
$$

When are two sets equal?

Two sets are equal only if they contain the EXACT same elements.

Breakdown the word

Sub Set

What does "sub" mean?

sub- |s^b, səb| prefix

1 at, to, or from a lower level or position: subalpine.

- lower in rank: subaltern | subdeacon.
- of a smaller size; of a subordinate nature: subculture.

SUB SET = Smaller Set

2 somewhat; nearly; more or less: subantarctic.

3 denoting subsequent or secondary action of the same kind: sublet | subdivision.

4 denoting support: subvention.

5 Chemistry in names of compounds containing a relatively small proportion of a component: suboxide.

You can think of a subset as a set that "fits inside" of another set.

3 is an element of A and B
2 is an element of A and B
4 is only an element of A

$$
\begin{aligned}
& \mathrm{A}=\left\{\begin{array}{l}
4, \\
\sqrt{\sqrt{4}},
\end{array}\right\} \\
& \mathrm{B}=\left\{\begin{array}{r}
3,2
\end{array}\right\}
\end{aligned}
$$

Set B is a subset of Set A if every element of B

 is also an element of A .

ALL elements in the subset can match to elements in the larger or equal set.

$$
\begin{aligned}
& \mathrm{A}=\left\{\begin{array}{l}
4, \\
, 2
\end{array}, 2\right\} \\
& \mathrm{B}=\left\{\begin{array}{l}
3,
\end{array}\right\}
\end{aligned}
$$

Is a subset always smaller?

Set B is a subset of Set A if every element of B is also an element of A.

$$
\mathrm{A}=\{1,2,3\}
$$

$$
B=\{1,2,3\}
$$

Set B is a subset of Set A if

every element of B is also an element of A.

Justify which box contains a set and its subset.

B

$$
\begin{aligned}
& \mathrm{L}=\{0,3,9\} \\
& \mathrm{P}=\{3,9,0\}
\end{aligned}
$$

Create three subsets that fit inside of Set B.
$B=\{3,5,7,9,11,13,15,17\}$

Any answer that ONLY uses the elements in B is correct.

$$
\begin{aligned}
& \text { Example answer : } \\
& C=\{3,5\} \\
& D=\{3\} \\
& E=\{3,5,7\}
\end{aligned}
$$

Create three subsets that fit inside of Set B.
$B=\{3,5,7,9,11,13,15,17\}$
Why is $M=\{3,4,5\}$ not a subset of B ?
M is not a subset of B because not every element of M can be found in B.

OR
M is not a subset of B because there is an element in M that is not in B.

Translates to "is a subset of"

$\mathrm{A} \subset \mathrm{B}$

A "is a subset of" B

$\mathrm{B} \subset \mathrm{A}$

B "is a subset of" A

Translates to "is NOT a subset of"

$$
\mathrm{A}=\{2,3,4\} \quad \mathrm{B}=\{2,3\}
$$

Which is true?

$$
\mathrm{A} \subset \mathrm{~B}
$$

$$
\mathrm{B} \subset \mathrm{~A}
$$

How do you know the other is not true?

$B \subset A$ is true B is a subset of A. We know B is a subset of A because every element of
 B can be found in A .

$\mathrm{A} \subset \mathrm{B}$ is not true because A is not a subset of B. A is not a subset of B because every element of A cannot be found in B.

List the elements of A and the elements of M.

$$
A=\{3,6,9,12,15,18,21\}
$$

$$
M=\{21\}
$$

$M=\{4,8,12,16\}$
$\mathrm{N}=\{2,4\}$
$O=\{12,16\}$
Which of the following is true? How do you know?
a. $\mathrm{M}=\mathrm{N}$
b. $\mathrm{O} \subset \mathrm{N}$
c. $\mathrm{N} \nsubseteq \mathrm{M}$

Justify why the other two options are not true.

$N \not \subset M$ is true because N is not a subset of M.

N is not a subset of M because not every element of N can be found in M.
$M=N$ is not true because M and N do not have exactly the same elements.
$O \subset N$ is not true because every element of O cannot be found N.

List the elements of Sets B and K.

$B=\{x \mid x$ is an even, natural number greater than 17 and less than 25\}
$K=\{x \mid x$ is a lowercase letter of the English alphabet in print that a curve is always used to make,

Ex. p has a curve in it
x does not have a curve in it

$B=\{18,20,22,24\}$

$$
K=\{a, b, c, d, e, f, g, j, o, p, q, r, s, u\}
$$

True or False?

If false, make the expression true using correct set notation.
$1.3 \in A$
$2.0 \in A$
$3.7 \notin A$
4. $M \in A$
$5.9 \notin A$
6. $A \notin M$
7. What could be a rule for Set A?

Express it, using proper set notation.
8. What could be a rule for Set M?

Express it, using proper set notation.

1. True
2. True
3. False. 7 is an element of A.
4. False. M is a subset of A.
5. False. 9 is an element of A.
6. False. A is not a subset of M.
7. A possible rule for set A could be the set of integers greater than -1 and less than 10 .
8. A possible rule for M is the set of integers that cannot be a denominator in a fraction.

Day Two
 Union and Intersection Cardinality Complement

Visualising Union and Intersection

Shade the Venn Diagram to represent Union.

Shade the Venn Diagram to represent Intersection.

The intersection of two sets is the set of elements in common to both.
$\cap=$

$\cap=$ "intersect"

$A \cap B=$

$\cap=$ "intersect"

$A \cap B=A$ "intersect" B

The union of two sets A and B is found by putting together in a new set all of the elements of A and B
** Only write each element once **

U = "union"

* just think \cup for \cup nion

U = "union"

* just think \cup for \cup nion

$$
A \cup B=
$$

U = "union"

* just think \cup for \cup nion

$$
A \cup B=A \text { "union" } B
$$

Cardinality refers to the number of items in a set

Symbol is a hashtag \# A = number of items in A

$$
\text { \# A = } 5
$$

Cardinality refers to the number of items in a set

Symbol is a hashtag \# A = number of items in A

$$
\text { \# A = } 5
$$

Cardinality refers to the number of items in a set

$$
\begin{aligned}
& \text { \# A }= \\
& \text { \# B }=
\end{aligned}
$$

Cardinality refers to the number of items in a set

$$
\begin{aligned}
\# A & =5 \\
\# B & =2
\end{aligned}
$$

Complement of A refers to the set of items NOT in A

The symbol for finding the complement is an apostrophe.
$A^{\prime}=$ the set of everything NOT in A
$A^{\prime}=$

Complement of A refers to the set of items NOT in A

The symbol for finding the complement is an apostrophe.
$A^{\prime}=$ the set of everything NOT in A
$A^{\prime}=\{3,2\}$

The forms top favorite movies

1) How would you describe where Big Hero 6 and Finding Nemo are?
2) How would you describe where Batman vs Superman and Finding Dory are?

Put the following sets into the Venn Diagram.

$$
\begin{aligned}
U & =\{2,4,6,8,10,12,14,16,18,20\} \\
C & =\{x \mid x \text { is a multiple of } 4\}
\end{aligned}
$$

$$
H=\{x \mid x \text { is a multiple of } 3\}
$$

